Analytical and Bioanalytical Chemistry

, Volume 392, Issue 7–8, pp 1439–1446 | Cite as

Ionic liquids as mobile phase additives for the high-performance liquid chromatographic analysis of fluoroquinolone antibiotics in water samples

  • Antonio V. Herrera-Herrera
  • Javier Hernández-Borges
  • Miguel Ángel Rodríguez-Delgado
Original Paper


In this work, four ionic liquids differing in the length of the alkyl chain on the imidazolium cation and one ionic liquid containing tetraethylammonium, all with the same counterion, (i.e. 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIm-BF4), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIm-BF4), 1-hexyl-3-methylimidazolium tetrafluoroborate (HMIm-BF4), 1-methyl-3-octylimidazolium tetrafluoroborate (MOIm-BF4), and tetraethylammonium tetrafluroborate (Et4N-BF4)) were tested as mobile phase additives for HPLC separation of a group of seven basic fluoroquinolone (FQ) antibiotics for human and veterinary use (i.e. fleroxacin, ciprofloxacin, lomefloxacin, danofloxacin, enrofloxacin, sarafloxacin, and difloxacin) using a conventional reversed-phase Nova-Pak C18 column. Fluorescence detection was used. Among the ionic liquids selected, use of BMIm-BF4 enabled effective separation of these compounds with relatively low analysis time (14 min). The best separation was achieved by isocratic elution at 1 mL min−1 with 5 mmol L−1 BMIm-BF4 and 10 mmol L−1 ammonium acetate at pH 3.0 with 13% (v/v) acetonitrile. Limits of detection (LODs) for fluorescence detection were in the range 0.5–11 μg L−1. The method was tested by analyzing several water samples after the optimization of a suitable solid-phase extraction (SPE) procedure using Oasis HLB cartridges. Mean recovery values were above 84% for all analytes with LODs in the range 1–29 ng L−1.


High-performance liquid chromatography Fluorescence detection Fluoroquinolones Antibiotics Ionic liquids Water 


  1. 1.
    Galinski M, Lewandowski A, Stepniak I (2006) Electrochim Acta 51:5567–5580CrossRefGoogle Scholar
  2. 2.
    Berthod A, Ruiz-Ángel MJ, Carda-Broch S (2008) J Chromatogr A 1184:6–18CrossRefGoogle Scholar
  3. 3.
    Ruiz-Ángel MJ, Carda-Broch S, Berthod A (2006) J Chromatogr A 1119:202–208CrossRefGoogle Scholar
  4. 4.
    Kaliszan R, Marszall MP, Markuszewski MJ, Baczek T, Pernak J (2004) J Chromatogr A 1030:263–271CrossRefGoogle Scholar
  5. 5.
    Xiaohua XH, Zhao L, Liu X, Jiang SX (2004) Anal Chim Acta 519:207–211CrossRefGoogle Scholar
  6. 6.
    He LJ, Zhang WZ, Zhao L, Liu X, Jiang SX (2003) J Chromatogr A 1007:39–45CrossRefGoogle Scholar
  7. 7.
    Marszall MP, Kaliszan R (2007) Crit Rev Anal Chem 37:127–140CrossRefGoogle Scholar
  8. 8.
    Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Sci Total Environ 225:109–118CrossRefGoogle Scholar
  9. 9.
    Golet EM, Alder AC, Hartmann A, Ternes TA, Giger W (2001) Anal Chem 73:3632–3638CrossRefGoogle Scholar
  10. 10.
    Golet EM, Strehler A, Alder AC, Giger A (2002) Anal Chem 74:5455–5462CrossRefGoogle Scholar
  11. 11.
    Ferdig M, Kaleta A, Buchberger W (2005) J Sep Sci 28:1448–1456CrossRefGoogle Scholar
  12. 12.
    Sacher F, Lange FT, Brauch HJ, Blankenhorn I (2001) J Chromatogr A 938:199–210CrossRefGoogle Scholar
  13. 13.
    Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Environ Sci Technol 36:1202–1211CrossRefGoogle Scholar
  14. 14.
    Hartmann A, Golet EM, Gartiser S, Alder AC, Koller T, Widmer RM (1999) Environ Contam Toxicol 36:115–119CrossRefGoogle Scholar
  15. 15.
    Pedersen JA, Soliman M, Suffet IH (2005) J Agric Food Chem 53:1625–1632CrossRefGoogle Scholar
  16. 16.
    Peña A, Chimielova D, Lino CM, Solich P (2007) J Sep Sci 30:2924CrossRefGoogle Scholar
  17. 17.
    El-Kommos MA, Saleh GA, El-Giwazi SM, Abou-Elwafa MA (2003) Talanta 60:1033–1050CrossRefGoogle Scholar
  18. 18.
    Turiel E, Martin-Esteban A, Tadeo JL (2006) Anal Chim Acta 562:30–35CrossRefGoogle Scholar
  19. 19.
    Cañada-Cañada F, Espinosa-Mansilla A, Muñoz de la Peña A (2007) J Sep Sci 30:1242–1249CrossRefGoogle Scholar
  20. 20.
    Zhao SJ, Jiang HY, Ding SY, Li XL, Wang GQ, Li C, Shen JZ (2007) Chromatographia 65:539–544Google Scholar
  21. 21.
    Wright DH, Herman VK, Konstantinides FN, Rotschafer JC (1998) J Chromatogr B 709:97–104CrossRefGoogle Scholar
  22. 22.
    Schneider MJ, Braden SE, Reyes-Herrera I, Donoghue DJ (2007) J Chromatogr B 846:8–13CrossRefGoogle Scholar
  23. 23.
    Rodríguez-Díaz RC, Fernández-Romero JM, Aguilar-Caballos MP, Gómez-Hens A (2006) J Agric Food Chem 54:9670–9676CrossRefGoogle Scholar
  24. 24.
    Vilchez JL, Navalón A, Araujo L, Prieto A (2007) Anal Lett 40:601–613CrossRefGoogle Scholar
  25. 25.
    Bailac S, Barrón D, Barbosa J (2006) Anal Chim Acta 580:163–169CrossRefGoogle Scholar
  26. 26.
    Prat MD, Benito J, Compañó R, Hernández-Arteseros JA, Granados M (2004) J Chromatogr A 1041:27–33CrossRefGoogle Scholar
  27. 27.
    Reta M, Carr PW (1999) J Chromatogr A 855:121–127CrossRefGoogle Scholar
  28. 28.
    Ferdig M, Kaleta A, Vo TDT, Buchberger W (2004) J Chromatogr A 1047:305–311Google Scholar
  29. 29.
    Jiménez-Lozano E, Marqués I, Barrón D, Beltrán JL, Barbosa J (2002) Anal Chim Acta 464:37–45CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Antonio V. Herrera-Herrera
    • 1
  • Javier Hernández-Borges
    • 2
  • Miguel Ángel Rodríguez-Delgado
    • 1
  1. 1.Departmento de Química Analítica, Nutrición y BromatologíaUniversidad de La LagunaTenerife, Islas CanariasSpain
  2. 2.Departamento de Protección VegetalInstituto Canario de Investigaciones Agrarias (ICIA)Tenerife, Islas CanariasSpain

Personalised recommendations