Advertisement

Analytical and Bioanalytical Chemistry

, Volume 392, Issue 7–8, pp 1411–1418 | Cite as

Design of acidochromic dyes for facile preparation of pH sensor layers

  • Gerhard J. Mohr
  • Heidrun Müller
  • Beate Bussemer
  • Annegret Stark
  • Tommaso Carofiglio
  • Sabine Trupp
  • Rüdiger Heuermann
  • Thomas Henkel
  • Daniel Escudero
  • Leticia González
Original Paper

Abstract

Eight new acidochromic dyes have been synthesised that can be used for optically monitoring pH in the range from 3 to 12. Their corresponding pK a values have been both measured and calculated theoretically by means of density functional theory. The synthesis of these new dyes is facile without the need for chromatographic purification. The dyes can be covalently linked to polymers containing hydroxyl functions such as cellulose, polyurethane hydrogel, and hydroxyalkyl methacrylate. The resulting sensor layers exhibit significant colour changes both in the UV and in the visible spectral range.

Figure

Sensor layers based on covalently immobilised pH indicator dyes show fast and fully reversible colour changes.

Keywords

Optical sensors pH measurement Polymers 

Notes

Acknowledgement

This work was supported by the Heisenberg fellowship MO 1062/1–2 and the project MO 1062/2–2 of the Deutsche Forschungsgemeinschaft, the BMBF project 13N9535, the Carl-Zeiss Stiftung, the Stiftung für Technologie, Innovation und Forschung Thüringen, the EU within the Marie Curie project MTKD-CT-029554, and the “Fundació Sa Nostra” (D.E.). This support is gratefully acknowledged.

References

  1. 1.
    Zollinger H (2003) Color chemistry: syntheses, properties, and applications of organic dyes and pigments. Wiley–VCH, 3rd edn, ISBN 3–906390–23–3Google Scholar
  2. 2.
    Werner T, Wolfbeis OS (1993) Fresenius J Anal Chem 346:564CrossRefGoogle Scholar
  3. 3.
    Weigl BH, Holobar A, Rodriguez NV, Wolfbeis OS (1993) Anal Chim Acta 282:335CrossRefGoogle Scholar
  4. 4.
    Munkholm C, Walt DR, Milanovich FP, Klainer SM (1986) Anal Chem 58:1427CrossRefGoogle Scholar
  5. 5.
    Mohr GJ, Tirelli N, Spichiger UE (1999) Anal Chem 71:1534CrossRefGoogle Scholar
  6. 6.
    Lobnik A, Oehme I, Murkovic I, Wolfbeis OS (1998) Anal Chim Acta 367:159CrossRefGoogle Scholar
  7. 7.
    Carofiglio T, Fregonese C, Mohr GJ, Rastrelli F, Tonellato U (2006) Tetrahedron 62:1502CrossRefGoogle Scholar
  8. 8.
    Henkel T, Trupp S, Mohr GJ, personal communicationGoogle Scholar
  9. 9.
    Mohr GJ, Werner T, Wolfbeis OS (1994) Dyes Pigments 24:223CrossRefGoogle Scholar
  10. 10.
    Mohr GJ, Wolfbeis OS (1994) Anal Chim Acta 292:41CrossRefGoogle Scholar
  11. 11.
    Mohr GJ (2006) Analytix – Fluka 3:6Google Scholar
  12. 12.
    Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Chem Phys Lett 240:283CrossRefGoogle Scholar
  13. 13.
    Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165CrossRefGoogle Scholar
  14. 14.
    Becke AD (1998) Phys Rev A 38:3098CrossRefGoogle Scholar
  15. 15.
    Perdew JP (1986) Phys Rev B 33:8822CrossRefGoogle Scholar
  16. 16.
    Cancès MT, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032CrossRefGoogle Scholar
  17. 17.
    Cossi M, Barone V, Mennucci B, Tomasi J (1998) Chem Phys Lett 286:253CrossRefGoogle Scholar
  18. 18.
    Mennucci B, Tomasi J (1997) J Chem Phys 106:5151CrossRefGoogle Scholar
  19. 19.
    Frisch MJ et al (2003) Gaussian 03, Revision C.02. Gaussian, Wallingford, CTGoogle Scholar
  20. 20.
    Liptak MD, Shields GC (2001) J Am Chem Soc 123:7313CrossRefGoogle Scholar
  21. 21.
    Schmidt am Busch M, Knapp EW (2004) ChemPhysChem 5:1513CrossRefGoogle Scholar
  22. 22.
    Hansch C, Leo AJ (1979) Substituent constants for correlation analysis in chemistry and biology. Wiley, New York, p 13Google Scholar
  23. 23.
    Dinten O, Spichiger UE, Chaniotakis N, Gehrig P, Rusterholz B, Morf WE, Simon W (1991) Anal Chem 63:596CrossRefGoogle Scholar
  24. 24.
    Seiler K, Simon W (1992) Anal Chim Acta 266:73CrossRefGoogle Scholar
  25. 25.
    Rosatzin T, Holy P, Seiler K, Rusterholz B, Simon W (1992) Anal Chem 64:2029CrossRefGoogle Scholar
  26. 26.
    Poplin JH, Swatloski RP, Holbrey JD, Spear SK, Metlen A, Grätzel M, Nazeeruddin MK, Rogers RD (2007) Chem Commun 2025Google Scholar
  27. 27.
    Egorov VM, Smirnova SV, Formanovsky AA, Pletnev IV, Zolotov YA (2007) Anal Bioanal Chem 387:2263CrossRefGoogle Scholar
  28. 28.
    Kosch U, Klimant I, Werner T, Wolfbeis OS (1998) Anal Chem 70:3892CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Gerhard J. Mohr
    • 1
  • Heidrun Müller
    • 1
  • Beate Bussemer
    • 1
  • Annegret Stark
    • 2
  • Tommaso Carofiglio
    • 3
  • Sabine Trupp
    • 1
    • 4
  • Rüdiger Heuermann
    • 4
  • Thomas Henkel
    • 5
  • Daniel Escudero
    • 6
  • Leticia González
    • 6
  1. 1.Institute of Physical ChemistryFriedrich-Schiller University JenaJenaGermany
  2. 2.Institute of Technical Chemistry and Environmental ChemistryFriedrich-Schiller University JenaJenaGermany
  3. 3.Dipartimento di Scienze Chimiche and ITM-CNR, Sezione PadovaUniversità di PadovaPadovaItaly
  4. 4.TriOS GmbHOldenburgGermany
  5. 5.Institute of Photonic TechnologyJenaGermany
  6. 6.Institute of Physical ChemistryTheoretical Chemistry, Friedrich-Schiller University JenaJenaGermany

Personalised recommendations