Skip to main content
Log in

Electroporation microarray for parallel transfer of small interfering RNA into mammalian cells

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper describes the fabrication of microarrays that enable the parallel electroporation of small interfering RNAs (siRNAs) into mammalian cells. To optimize the conditions of microarray preparation and electric pulsing, a self-assembled monolayer was formed on a gold electrode, and a cationic polymer was adsorbed by the entire surface of the monolayer. siRNA was then adsorbed by the cationically modified electrode through electrostatic interactions. Human embryonic kidney cells stably transformed with the expression construct of green fluorescent protein (GFP) were used to examine the electric pulse-triggered transfer of GFP-specific siRNA. A single electric pulse was applied to the cells cultured on the electrode at a field strength of 240 V cm−1. The expression of GFP was significantly suppressed in a sequence-specific manner two days after pulsing. Microscopic observation and flow-cytometric analysis revealed that the expression of GFP was attenuated in the majority of cells in a loading-dependent manner. Moreover, the effect of siRNA could be temporally controlled by changing the culture periods before pulsing. When a micropatterned self-assembled monolayer was used as a platform for loading siRNA in an array format, gene silencing was spatially restricted to the regions where specific siRNA was loaded. From these results, we conclude that array-based electroporation provides an excellent means of individual transfer of siRNAs into mammalian cells for high-throughput gene function studies.

Electroporation of siRNA on the microarray.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chang DC, Chassy BM, Saunders JA, Sowers AE (1992) Guide to electroporation and electrofusion. Academic Press, San Diego

    Google Scholar 

  2. Yamauchi F, Kato K, Iwata H (2004) Nucleic Acids Res 32:e187

    Article  CAS  Google Scholar 

  3. Inoue Y, Fujimoto H, Ogino T, Iwata H (2008) J R Soc Interface 5:909–918

    Article  CAS  Google Scholar 

  4. Yamauchi F, Okada M, Kato K, Jakt LM, Iwata H (2007) Biochim Biophys Acta 1770:1085–1097

    CAS  Google Scholar 

  5. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Nature 411:494–498

    Article  CAS  Google Scholar 

  6. Fire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Nature 391:806–811

    Article  CAS  Google Scholar 

  7. Kittler R, Putz G, Pelletier L, Poser I, Heninger AK, Drechsel D, Fischer S, Konstantinova I, Habermann B, Grabner H, Yaspo ML, Himmelbauer H, Korn B, Neugebauer K, Pisabarro MT, Buchholz F (2004) Nature 432:1036–1040

    Article  CAS  Google Scholar 

  8. Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M, Kerkhoven RM, Madiredjo M, Nijkamp W, Weigelt B, Agami R, Ge W, Cavet G, Linsley PS, Beijersbergen RL, Bernards R (2004) Nature 428:431–437

    Article  CAS  Google Scholar 

  9. Paddison PJ, Silva JM, Conklin DS, Schlabach M, Li M, Aruleba S, Balija V, O’Shaughnessy A, Gnoj L, Scobie K, Chang K, Westbrook T, Cleary M, Sachidanandam R, McCombie WR, Elledge SJ, Hannkn G (2004) Nature 428:427–431

    Article  CAS  Google Scholar 

  10. Pelkmans L, Fava E, Grabner H, Hannus M, Habermann B, Krausz E, Zerial M (2005) Nature 436:78–86

    Article  CAS  Google Scholar 

  11. Mousses S, Caplen NJ, Cornelison R, Weaver D, Basik M, Hautaniemi S, Elkahloun AG, Lotufo RA, Choudary A, Dougherty ER, Suh E, Kallioniemi O (2003) Genome Res 13:2341–2347

    Article  CAS  Google Scholar 

  12. Ovcharenko D, Jarvis R, Hunicke-Smith S, Brown D (2005) RNA 11:985–993

    Article  CAS  Google Scholar 

  13. Lin YC, Li M, Wu CC (2004) Lab Chip 4:104–108

    Article  CAS  Google Scholar 

  14. Jain T, Muthuswamy J (2007) Lab Chip 7:1004–1011

    Article  CAS  Google Scholar 

  15. Jain T, Muthuswamy J (2008) IEE Trans Biomed Eng 55:827–832

    Article  Google Scholar 

  16. Fujimoto H, Yoshizako S, Kato K, Iwata H (2006) Bioconj Chem 17:1404–1410

    Article  CAS  Google Scholar 

  17. Chaufer B, Rabiller-Baudry M, Bouguen A, Labbé JP, Quémerais A (2000) Langmuir 16:1852–1860

    Article  CAS  Google Scholar 

  18. Banyay M, Sarkar M, Gräslund A (2003) Biophys Chem 104:477–488

    Article  CAS  Google Scholar 

  19. Liquier J, Akhebat A, Taillandier E (1991) Spectrochim Acta 47A:177–186

    CAS  Google Scholar 

  20. Kinoshita K, Tsong TY (1978) Nature 272:258–260

    Article  Google Scholar 

  21. Wong TK, Neumann E (1982) Biochem. Biophys Res Commun 107:584–587

    Article  CAS  Google Scholar 

  22. Tsong TY (1991) Biophys J 60:297–306

    Article  CAS  Google Scholar 

  23. Wilson JA, Jayasena S, Khvorona A, Sabatinos S, Rodrigue-Gervais IG, Arya S, Sarangi F, Harris-Brandts M, Beaulieu S, Richardson CD (2003) Proc Natl Acad Sci U.S.A. 100:2783–2788

    Article  CAS  Google Scholar 

  24. Yamauchi F, Kato K, Iwata H (2005) Langmuir 21:8360–8367

    Article  CAS  Google Scholar 

  25. Niu L, Knoll W (2007) Anal Chem 79:2695–2702

    Article  CAS  Google Scholar 

  26. Yamauchi F, Koyamatsu Y, Kato K, Iwata H (2006) Biomaterials 27:3497–3504

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants-in-Aid for Scientific Research B (No. 15310090) and Kobe Cluster, the Knowledge-Based Cluster Creation Project, MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroo Iwata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujimoto, H., Kato, K. & Iwata, H. Electroporation microarray for parallel transfer of small interfering RNA into mammalian cells. Anal Bioanal Chem 392, 1309–1316 (2008). https://doi.org/10.1007/s00216-008-2423-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2423-z

Keywords

Navigation