Analytical and Bioanalytical Chemistry

, Volume 392, Issue 7–8, pp 1447–1457 | Cite as

Application of asymmetric flow field-flow fractionation (AsFlFFF) coupled to inductively coupled plasma mass spectrometry (ICPMS) to the quantitative characterization of natural colloids and synthetic nanoparticles

  • M. BoubyEmail author
  • H. GeckeisEmail author
  • F. W. Geyer
Original Paper


A straightforward quantification method is presented for the application of asymmetric flow field-flow fractionation (AsFlFFF) combined with inductively coupled plasma mass spectrometry (ICPMS) to the characterization of colloid-borne metal ions and nanoparticles. Reproducibility of the size calibration and recovery of elements are examined. Channel flow fluctuations are observed notably after initiation of the fractionation procedure. Their impact on quantification is considered by using 103Rh as internal reference. Intensity ratios measured for various elements and Rh are calculated for each data point. These ratios turned out to be independent of the metal concentration and total sample solution flow introduced into the nebulizer within a range of 0.4–1.2 mL min−1. The method is applied to study the interaction of Eu, U(VI) and Th with a mixture of humic acid and clay colloids and to the characterization of synthetic nanoparticles, namely CdSe/ZnS-MAA (mercaptoacetic acid) core/shell-coated quantum dots (QDs). Information is given not only on inorganic element composition but also on the effective hydrodynamic size under relevant conditions. Detection limits (DLs) are estimated for Ca, Al, Fe, the lanthanide Ce and the natural actinides Th and U in colloid-containing groundwater. For standard crossflow nebulizer, estimated values are 7 × 103, 20, 3 × 102, 0.1, 0.1 and 7 × 10−2 µg L−1, respectively. DLs for Zn and Cd in QD characterization are 28 and 11 µg L−1, respectively.


Outline of the principle of AsFlFFF/ICPMS and its application to the characterization of colloidal species in groundwater systems


Flow field-flow fractionation Inductively coupled plasma mass spectrometry Radionuclides Colloids Humic acids Nanoparticles Quantum dots Quantification Hydrodynamic size 



We thank Prof. J.-G. Choi, Department of Chemistry, Yonsei University, Seoul, for the provision of quantum dots. M.B. thanks her husband, V. Laliron, for the fruitful discussions throughout this work.

Supplementary material

216_2008_2422_MOESM1_ESM.pdf (236 kb)
ESM 1 (PDF 605 KB)


  1. 1.
    Hayashi C, Uyeda R, Tasaki A (eds) (1997) Ultra-fine particles. Exploratory science and technology. Noyes, Westwood, New Jersey, USAGoogle Scholar
  2. 2.
    Gao G (ed) (2004) Nanostructures and nanomaterials. Synthesis, properties and applications. Imperial College Press, LondonGoogle Scholar
  3. 3.
    Lu GQ, Zhao XS (eds) (2004) Nanoporous materials. Science and engineering. Imperial College Press, LondonGoogle Scholar
  4. 4.
    Koch CC (ed) (2007) Nanostructured materials. Processing, properties, and applications, 2nd edn. William Andrew, Norwich, NY, USAGoogle Scholar
  5. 5.
    Gonsalves KE, Halberstadt CR, Laurencin CT, Nair LS (eds) (2008) Biomedical nanostructures. Wiley-Interscience, Hoboken, New JerseyGoogle Scholar
  6. 6.
    Bowman MC, Ballard TE, Ackerson CJ, Feldheim DL, Margolis DM, Melander C (2008) J Am Chem Soc 130:6896–6897CrossRefGoogle Scholar
  7. 7.
    Kersting AB, Efurd DW, Finnegan DL, Rokop DJ, Smith DK, Thompson JL (1999) Nature 397:56–59CrossRefGoogle Scholar
  8. 8.
    Geckeis H, Schäfer T, Hauser W, Rabung T, Missana T, Degueldre C, Mori A, Eikenberg J, Fierz T, Alexander WR (2004) Radiochim Acta 92:765–774CrossRefGoogle Scholar
  9. 9.
    Kim J-I (2006) Nuc Eng Technol 38:459–482Google Scholar
  10. 10.
    Sen TK, Khilar KC (2006) Adv Coll Int Sci 119:71–96CrossRefGoogle Scholar
  11. 11.
    Zhu H, Han J, Xia JQ, Jin Y (2008) J Environ Monit 10:713–717CrossRefGoogle Scholar
  12. 12.
    Simeonova PP, Opopol N, Luster MI (eds) (2007) Nanotechnology-toxicological issues and environmental safety. Dordrecht, Springer, NetherlandsGoogle Scholar
  13. 13.
    Nowack B, Bucheli TD (2007) Environ Poll 150:5–22CrossRefGoogle Scholar
  14. 14.
    Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008) Langmuir 24:6409–6413CrossRefGoogle Scholar
  15. 15.
    Handy RD, von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M (2008) Ecotoxicol 17:287–314CrossRefGoogle Scholar
  16. 16.
    Hasselöv M, Readman JW, Ranville JF, Tiede K (2008) Ecotoxicol 17:344–361CrossRefGoogle Scholar
  17. 17.
    Templeton DM, Ariese F, Cornelis R, Danielsson L-G, Muntau H, van Leeuwen HP, Lobinski R (2000) IUPAC guidelines for terms related to speciation of trace elements. Pure Appl Chem 72:1453–1470CrossRefGoogle Scholar
  18. 18.
    von Wandruszka R, Schimpf M, Hill M, Engebretson R (1999) Org Geochem 30:229–235CrossRefGoogle Scholar
  19. 19.
    Zhou QH, Cabaniss SE, Maurice PA (2000) Wat Res 34:3505–3514CrossRefGoogle Scholar
  20. 20.
    Muller MB, Schmitt D, Frimmel FH (2000) Environ Sci Technol 34:4867–4872CrossRefGoogle Scholar
  21. 21.
    Sadi BBM, Wrobel K, Wrobel K, Kannamkumarath SS, Castillo JR, Caruso JA (2002) J Environ Monit 4:1010–1016CrossRefGoogle Scholar
  22. 22.
    Moon MH, Kang DJ, Jung JH, Kim JM (2004) J Sep Sci 27:710–717CrossRefGoogle Scholar
  23. 23.
    Giddings JC (1966) Sep Sci 1:123–125CrossRefGoogle Scholar
  24. 24.
    Schimpf M, Caldwell K, Giddings JC (eds) (2000) Field-flow fractionation handbook. Wiley, New York, pp 3 and 257Google Scholar
  25. 25.
    Wahlund KG, Giddings JC (1987) Anal Chem 59:1332–1339CrossRefGoogle Scholar
  26. 26.
    Jackson BP, Ranville JF, Neal AL (2005) Anal Chem 77:1393–1397CrossRefGoogle Scholar
  27. 27.
    Plaschke M, Schäfer T, Bundschuh T, Ngo Manh T, Knopp R, Geckeis H, Kim JI (2001) Anal Chem 73:4338–4347CrossRefGoogle Scholar
  28. 28.
    Petteys MP, Schimpf ME (1998) J Chrom A 816:145–158CrossRefGoogle Scholar
  29. 29.
    Bouby M, Geckeis H, Ngo Manh T, Yun JI, Dardenne K, Schaefer T, Walther C, Kim JI (2004) J Chrom A 1040:97–104CrossRefGoogle Scholar
  30. 30.
    Benedetti MF, Ranville JF, Allard T (2003) Colloids Surf A: Physicochem Eng Aspects 217:1–9CrossRefGoogle Scholar
  31. 31.
    Beckett R, Jue Z, Giddings JC (1987) Environ Sci Technol 21:289–295CrossRefGoogle Scholar
  32. 32.
    Schimpf ME, Wahlund KG (1997) J Microcol Sep 9:535–543CrossRefGoogle Scholar
  33. 33.
    Lead J, Wilkinson KJ, Balnois E, Larive C, Cutak B, Assemi S, Beckett R (2000) Environ Sci Technol 34:3508–3513CrossRefGoogle Scholar
  34. 34.
    Benincasa MA, Cartoni G, Imperia N (2002) J Sep Sci 25:405–415CrossRefGoogle Scholar
  35. 35.
    Reszat TN, Hendry MJ (2005) Anal Chem 77:4194–4200CrossRefGoogle Scholar
  36. 36.
    Lyven B, Hassellöv M, Haraldsson C, Turner DR (1997) Anal Chim Acta 357:187–196CrossRefGoogle Scholar
  37. 37.
    Hassellöv M, Lyven B, Haraldsson C, Sirinawin W (1999) Anal Chem 71:3497–3502CrossRefGoogle Scholar
  38. 38.
    Lyven B, Hassellöv M, Turner DR, Haraldsson C, Andersson K (2003) Geochem Cosmochim Acta 67:3791–3802CrossRefGoogle Scholar
  39. 39.
    Ngo Manh T, Geckeis H, Kim JI, Beck H (2001) Colloids Surf A: Physicochem Eng Aspects 181:289–301CrossRefGoogle Scholar
  40. 40.
    Baalousha M, Kammer FVD, Motelica-Heino M, Baborowski M, Hofmeiste C, Le Coustumer P (2006) Environ Sci Technol 40:2156–2162CrossRefGoogle Scholar
  41. 41.
    Beckett R (1991) Atom Spec 12:229–232Google Scholar
  42. 42.
    Taylor HE, Garbarino JR, Murphy DM, Beckett R (1992) Anal Chem 64:2036–2041CrossRefGoogle Scholar
  43. 43.
    Ranville JF, Chittleborough DJ, Shanks FT, Morrison RJS, Harris T, Doss F, Beckett R (1999) Anal Chim Acta 381:315–329CrossRefGoogle Scholar
  44. 44.
    Siripinyanond A, Barnes RM (1999) JAAS 14:1527–1531Google Scholar
  45. 45.
    Barnes RM, Siripinyanond A (2002) Adv Atom Spec 7:179–235Google Scholar
  46. 46.
    Chen B, Hulston J, Beckett R (2000) Sci Tot Environ 263:23–35CrossRefGoogle Scholar
  47. 47.
    Stolpe B, Hassellöv M, Andersson K, Turner DR (2005) Anal Chim Acta 535:109–121CrossRefGoogle Scholar
  48. 48.
    Bolea E, Gorriz MP, Bouby M, Laborda F, Castillo JR, Geckeis H (2006) J Chrom A 1129:236–246CrossRefGoogle Scholar
  49. 49.
    Wijnhoven J, Koorn JP, Poppe H, Kok WT (1995) J Chrom A 699:119–129CrossRefGoogle Scholar
  50. 50.
    Wolf M, Buckau G, Geyer S (2004) In: Buckau G (ed) Wissenschaftliche Berichte FZKA 6969. Forschungszentrum Karlsruhe, Karlsruhe, GermanyGoogle Scholar
  51. 51.
    Bouby M, Geckeis H, Lützenkirchen J, Schäfer T, Mihai S to be submitted in ESTGoogle Scholar
  52. 52.
    Kim JW, Han JJ, Choi JC, Kim DK, Je KC, Park SH, Yun JI, Fanghänel T (2006) J Korean Phys Soc 49:135–138Google Scholar
  53. 53.
    Hines MA, Guyot-Sionnest P (1996) J Phys Chem 100:468–471CrossRefGoogle Scholar
  54. 54.
    Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) J Phys Chem B 101:9463–9475CrossRefGoogle Scholar
  55. 55.
    Murray CB, Kagan CR, Bawendi MG (2000) Annu Rev Mater Sci 30:545–611CrossRefGoogle Scholar
  56. 56.
    Chan WCW, Nie S (1998) Science 281:2016–2018CrossRefGoogle Scholar
  57. 57.
    Mitchell GP, Mirkin CA, Letsinger RL (1999) J Am Chem Soc 121:8122–8123CrossRefGoogle Scholar
  58. 58.
    Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP (2001) J Phys Chem B 105:8861–8871CrossRefGoogle Scholar
  59. 59.
    Millipore (2008) Ultrafiltration selection guide: ultrafiltration membranes for macromolecule processing. Accessed 16 Jul 2008
  60. 60.
    ENRESA (1998) Publication Technica Num. 05/98. ENRESA, Madrid, SpainGoogle Scholar
  61. 61.
    Hoshino A, Fujikoka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Nano Lett 4:2163–2169CrossRefGoogle Scholar
  62. 62.
    Wang M, Kwon Oh J, Dykstra TE, Lou X, Scholes GD, Winnik MA (2006) Macromol 39:3664–3672CrossRefGoogle Scholar
  63. 63.
    Pons T, Uyeda HT, Medintz IL, Mattoussi H (2006) J Phys Chem B 110:20308–20316CrossRefGoogle Scholar
  64. 64.
    Sperling RA, Liedl T, Duhr S, Kudera S, Zanella M, Lin CAJ, Chang WH, Braun D, Parak WJ (2007) J Phys Chem C 111:11552–11559CrossRefGoogle Scholar
  65. 65.
    Schäfer T, Enzmann F, Kersten M, Bouby M, Kienzler B, Geckeis H (2007) In: Abstracts of the 11th international conference on chemistry and migration behaviour of actinides and fission products in the geosphere (Migration ’07), Munich, Germany, 26–31 August 2007, p 222Google Scholar
  66. 66.
    Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706–8715CrossRefGoogle Scholar
  67. 67.
    Mendes RK, Freire RS, Fonseca CP, Neves S, Kubota LT (2004) J Braz Chem Soc 15:849–855CrossRefGoogle Scholar
  68. 68.
    Dawson RMC, Elliot DC, Elliot WH, Jone KM (1969) Data for biochemical research, 2nd edn. Clarendon, Oxford Google Scholar
  69. 69.
    Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC, Boudreau R, Le Gros MA, Larabell CA, Alivisatos AP (2003) Nanotechnol 14:R15–R27CrossRefGoogle Scholar
  70. 70.
    Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Environ Toxicol Chem 27:1825–1851CrossRefGoogle Scholar
  71. 71.
    Chen Z, Westerhoff P, Herckes P (2008) Environ Toxicol Chem 27:1852–1859CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institut für Nukleare Entsorgung (INE), Forschungszentrum KarlsruheKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations