Analytical and Bioanalytical Chemistry

, Volume 393, Issue 4, pp 1091–1105 | Cite as

Delivering quantum dots into cells: strategies, progress and remaining issues

  • James B. Delehanty
  • Hedi Mattoussi
  • Igor L. Medintz


The use of semiconductor quantum dots (QDs) in biological sensing and labeling continues to grow with each year. Current and projected applications include use as fluorescent labels for cellular labeling, intracellular sensors, deep-tissue and tumor imaging agents, sensitizers for photodynamic therapy, and more recently interest has been sparked in using them as vectors for studying nanoparticle-mediated drug delivery. Many of these applications will ultimately require the QDs to undergo targeted intracellular delivery, not only to specific cells, but also to a variety of subcellular compartments and organelles. It is apparent that this issue will be critical in determining the efficacy of using QDs, and indeed a variety of other nanoparticles, for these types of applications. In this review, we provide an overview of the current methods for delivering QDs into cells. Methods that are covered include facilitated techniques such as those that utilize specific peptide sequences or polymer delivery reagents and active methods such as electroporation and microinjection. We critically examine the benefits and liabilities of each strategy and illustrate them with selected examples from the literature. Several important related issues such as QD size and surface coating, methods for QD biofunctionalization, cellular physiology and toxicity are also discussed. Finally, we conclude by providing a perspective of how this field can be expected to develop in the future.


Semiconductor quantum dot Peptide Nanoparticle Endocytosis Electroporation Biosensor Cellular labeling Microinjection Transfection Polymer Fluorescence 



The authors acknowledge Jennifer Becker and Ilya Elashvilli of the CB Directorate/Physical S&T Division (ARO/DTRA), ONR, NRL, and the NRL-NSI for financial support.


  1. 1.
    Murray CB, Kagan CR, Bawendi MG (2000) Ann Rev Mater Sci 30:545–610CrossRefGoogle Scholar
  2. 2.
    Medintz I, Uyeda H, Goldman E, Mattoussi H (2005) Nature Mater 4:435–446CrossRefGoogle Scholar
  3. 3.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Science 307:538–544CrossRefGoogle Scholar
  4. 4.
    Alivisatos AP, Gu W, Larabell CA (2005) Ann Rev Biomed Eng 7:55–76CrossRefGoogle Scholar
  5. 5.
    Alivisatos AP (2004) Nature Biotech 22:47–52CrossRefGoogle Scholar
  6. 6.
    Klostranec JM, Chan WCW (2006) Adv Mater 18:1953–1964Google Scholar
  7. 7.
    Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Science 300:1434–1437CrossRefGoogle Scholar
  8. 8.
    Clapp AR, Pons T, Medintz IL, Delehanty JB, Melinger JS, Tiefenbrunn T, Dawson PE, Fisher BR, O'Rourke B, Mattoussi H (2007) Adv Mater 19:1921–1926CrossRefGoogle Scholar
  9. 9.
    Clapp AR, Medintz IL, Mattoussi H (2005) ChemPhysChem 7:47–57CrossRefGoogle Scholar
  10. 10.
    Medintz IL, Clapp AR, Brunel FM, Tiefenbrunn T, Uyeda HT, Chang EL, Deschamps JR, Dawson PE, Mattoussi H (2006) Nature Mater 5:581–589CrossRefGoogle Scholar
  11. 11.
    Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM (2003) Nature Mater 2:630–638CrossRefGoogle Scholar
  12. 12.
    Goldman ER, Medintz IL, Whitley J, Hayhurst A, Clapp AR, Uyeda HT, Deschamps JR, Lassman M, Mattoussi H (2005) J Am Chem Soc 127:6744–6751CrossRefGoogle Scholar
  13. 13.
    Susumu K, Uyeda HT, Medintz IL, Pons T, Delehanty JB, Mattoussi H (2007) J Am Chem Soc 129:13987–13996CrossRefGoogle Scholar
  14. 14.
    Pinaud F, King D, Moore HP, Weiss S (2004) J Am Chem Soc 126:6115–6123CrossRefGoogle Scholar
  15. 15.
    Sapsford KE, Pons T, Medintz IL, Higashiya S, Brunel FM, Dawson PE, Mattoussi H (2007) J Phys Chem C 111:11528–11538CrossRefGoogle Scholar
  16. 16.
    Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Nature Biotech 21:41–46CrossRefGoogle Scholar
  17. 17.
    Howarth M, Takao K, Hayashi Y, Ting A (2005) Proc Natl Acad Sci USA 102:7583–7588CrossRefGoogle Scholar
  18. 18.
    Chattopadhyay PK, Price DA, Harper TF, Betts MR, Yu J, Gostick E, Perfetto SP, Goepfert P, Koup RA, De Rosa SC, Bruchez MP, Roederer M (2006) Nature Med 12:972–977CrossRefGoogle Scholar
  19. 19.
    Luccardini C, Yakovlev A, Gaillard S, van't Hoff M, Alberola AP, Mallet JM, Parak WJ, Feltz A, Oheim M (2007) J Biomed Biotechnol 2007(7):68963Google Scholar
  20. 20.
    Ozkan M (2004) Drug Discov Today 9:1065–1071CrossRefGoogle Scholar
  21. 21.
    Emerich DF, Thanos CG (2006) Biomol Eng 23:171–184CrossRefGoogle Scholar
  22. 22.
    Hild WA, Breunig M, Goepferich A (2008) Eur J Pharm Biopharm 68:153–168CrossRefGoogle Scholar
  23. 23.
    Sukhorukov GB, Mohwald H (2007) Trends Biotechnol 25:93–98CrossRefGoogle Scholar
  24. 24.
    Jiang W, Kim BYS, Rutka JT, Chan WCW (2007) Exp Opin Drug Deliv 4:621–633CrossRefGoogle Scholar
  25. 25.
    Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV (2004) Nature Biotech 22:93–97CrossRefGoogle Scholar
  26. 26.
    Groman EV, Bouchard JC, Reinhardt CP, Vaccaro DE (2007) Bioconjug Chem 18:1763–1771CrossRefGoogle Scholar
  27. 27.
    Bakalova R, Zhelev Z, Aoki I, Kanno I (2007) Nature Photonics 1:487–489CrossRefGoogle Scholar
  28. 28.
    Watson P, Jones AT, Stephens DJ (2005) Adv Drug Deliv Rev 57:43–61CrossRefGoogle Scholar
  29. 29.
    Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Nature Biotech 21:47–51CrossRefGoogle Scholar
  30. 30.
    Delehanty JB, Medintz IL, Pons T, Brunel FM, Dawson PE, Mattoussi H (2006) Bioconjug Chem 17:920–927CrossRefGoogle Scholar
  31. 31.
    Helmick L, Antúnez de Mayolo A, Zhang Y, Cheng CM, Watkins SC, Wu C, LeDuc PR (2008) Nano Lett 8:1303–1308CrossRefGoogle Scholar
  32. 32.
    Nabiev I, Mitchell S, Davies A, Williams Y, Kelleher D, Moore R, Gun'ko YK, Byrne S, Rakovich YP, Donegan JF, Sukhanova A, Conroy J, Cottell D, Gaponik N, Rogach A, Volkov Y (2007) Nano Lett 7:3452–3461CrossRefGoogle Scholar
  33. 33.
    Hardman R (2006) Environ Health Perspect 114:165–172CrossRefGoogle Scholar
  34. 34.
    El-Andaloussi S, Holm T, Langel U (2005) Curr Pharm Des 11:3597–3611CrossRefGoogle Scholar
  35. 35.
    Frankel AD, Pabo CO (1988) Cell 1988:1189–1193CrossRefGoogle Scholar
  36. 36.
    Ruan G, Agrawal A, Marcus AI, Nie S (2007) J Am Chem Soc 129:14759–14766CrossRefGoogle Scholar
  37. 37.
    Lei Y, Tang H, Yao L, Yu R, Feng M, Zou B (2008) Bioconjug Chem 19:421–427CrossRefGoogle Scholar
  38. 38.
    Santra S, Yang H, Holloway PH, Stanley JT, Mericle RA (2005) J Am Chem Soc 127:1656–1657CrossRefGoogle Scholar
  39. 39.
    Santra S, Yang H, Stanley JT, Holloway PH, Moudgil BM, Walter G, Mericle RA (2005) Chem Commun 25:3144–3146CrossRefGoogle Scholar
  40. 40.
    Xue FL, Chen JY, Guo J, Wang CC, Yang WL, Wang PN, Lu DR (2007) J Fluoresc 17:149–154CrossRefGoogle Scholar
  41. 41.
    Munoz-Morris MA, Heitz F, Divita G, Morris MC (2007) Biochem Biophys Res Commun 355:877–882CrossRefGoogle Scholar
  42. 42.
    Rozenzhak SM, Kadakia MP, Caserta TM, Westbrook TR, Stone MO, Naik RR (2007) Chem Commun 17:2217–2219Google Scholar
  43. 43.
    Lieleg O, Lopez-Garcia M, Semmrich C, Auernheimer J, Kessler H, Bausch AR (2007) Small 3:1560–1565CrossRefGoogle Scholar
  44. 44.
    Smith BR, Cheng Z, De A, Koh AL, Sinclair R, Gambhir SS (2008) Nano Lett 8(9):2599–2606CrossRefGoogle Scholar
  45. 45.
    Biju V, Muraleedharan D, Nakayama K, Shinohara Y, Itoh T, Baba Y, Ishikawa M (2007) Langmuir 23:10254–10261CrossRefGoogle Scholar
  46. 46.
    Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, Jares-Erijman EA, Jovin TM (2004) Nat Biotechnol 22:198–203CrossRefGoogle Scholar
  47. 47.
    Liu W, Howarth M, Greytak AB, Zheng Y, Nocera DG, Ting AY, Bawendi MG (2008) J Am Chem Soc 130:1274–1284CrossRefGoogle Scholar
  48. 48.
    Diagaradjane P, Orenstein-Cardona JM, E Colon-Casasnovas N, Deorukhkar A, Shentu S, Kuno N, Schwartz DL, Gelovani JG, Krishnan S (2008) Clin Cancer Res 14:731–741CrossRefGoogle Scholar
  49. 49.
    Chan WCW, Nie S (1998) Science 281:2016–2018CrossRefGoogle Scholar
  50. 50.
    Pan YL, Cai JY, Qin L, Wang H (2006) Acta Biochim Biophys Sin 38:646–652CrossRefGoogle Scholar
  51. 51.
    Qian J, Yong KT, Roy I, Ohulchanskyy TY, Bergey EJ, Lee HH, Tramposch KM, He S, Maitra A, Prasad PN (2008) J Phys Chem B 111:6969–6972CrossRefGoogle Scholar
  52. 52.
    Yong KT, Qian J, Roy I, Lee HH, Bergey EJ, Tramposch KM, He S, Swihart MT, Maitra A, Prasad PN (2007) Nano Lett 7:761–765CrossRefGoogle Scholar
  53. 53.
    Zheng J, Ghazani AA, Song Q, Mardyani S, Chan WCW, Wang C (2006) Lab Hematol 12:94–98CrossRefGoogle Scholar
  54. 54.
    Kloepfer JA, Mielke RE, Wong MS, Nealson KH, Stucky G, Nadeau JL (2003) Appl Environ Microbiol 69:4205–4213CrossRefGoogle Scholar
  55. 55.
    Zhang H, Sachdev D, Wang C, Hubel A, Gaillard-Kelly M, Yee D (2008) Breast Cancer Res Treat (in press)Google Scholar
  56. 56.
    Chakraborty SK, Fitzpatrick JA, Phillippi JA, Andreko S, Waggoner AS, Bruchez MP, Ballou B (2007) Nano Lett 7:2618–2626CrossRefGoogle Scholar
  57. 57.
    Schroeder JE, Shweky I, Shmeeda H, Banin U, Gabizon A (2007) J Control Release 124:28–34CrossRefGoogle Scholar
  58. 58.
    Derfus AM, Chan WCW, Bhatia SN (2004) Adv Mater 16:961–966CrossRefGoogle Scholar
  59. 59.
    Gopalakrishnan G, Danelon C, Izewska P, Prummer M, Bolinger PY, Geissbuhler I, Demurtas D, Dubochet J, Vogel H (2006) Angew Chem Int Ed 45:5478–5483CrossRefGoogle Scholar
  60. 60.
    Al-Jamal WT, Al-Jamal KT, Tian B, Lacerda L, Bornans PH, Frederik PM, Kostarelos K (2008) ACS Nano 2:408–418CrossRefGoogle Scholar
  61. 61.
    Duan H, Nie S (2007) J Am Chem Soc 129:3333–3338CrossRefGoogle Scholar
  62. 62.
    de Farias PMA, Santos BS, Menezes FD, Brasil Jr AG, Ferreira R, Motta MA, Castro-Neto AG, Vieira AAS, Silva DCN, Fontes A, Cesar CL (2007) Appl Phys A 89:957–961Google Scholar
  63. 63.
    Bharali DJ, Lucey DW, Jayakumar H, Pudavar HE, Prasad PN (2005) J Am Chem Soc 127:11364–11371CrossRefGoogle Scholar
  64. 64.
    Ciofani G, Raffa V, Menciass A, Cuschieri A (2008) Biotechnol Bioeng 101:850–858CrossRefGoogle Scholar
  65. 65.
    Hess GT, Humphries WH, Fay NC, Payne CK (2007) Biochim Biophys Acta 1773:1583–1588CrossRefGoogle Scholar
  66. 66.
    Chen FQ, Gerion D (2004) Nano Lett 4:1827–1832CrossRefGoogle Scholar
  67. 67.
    Slotkin JR, Chakrabarti L, Dai HN, Carney RS, Hirata T, Bregman BS, Gallicano GI, Corbin JG, Haydar TF (2007) Dev Dyn 236:3393–3401CrossRefGoogle Scholar
  68. 68.
    Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) Science 298:1759–62CrossRefGoogle Scholar
  69. 69.
    Zhang Y, So MK, Rao JH (2006) Nano Lett 6:1988–1992CrossRefGoogle Scholar
  70. 70.
    So MK, Xu CJ, Loening AM, Gambhir SS, Rao JH (2006) Nat Biotechnol 24:339–343CrossRefGoogle Scholar
  71. 71.
    Medintz IL (2006) Nature Mater 5:842CrossRefGoogle Scholar
  72. 72.
    Pons T, Uyeda HT, Medintz IL, Mattoussi H (2006) J Phys Chem B 110:20308–20316CrossRefGoogle Scholar
  73. 73.
    Colvin VL (2003) Nature Biotech 21:1166–1170CrossRefGoogle Scholar
  74. 74.
    Cho SJ, Maysinger D, Jain M, Roder B, Hackbarth S, Winnik FM (2007) Langmuir 23:1974–1980CrossRefGoogle Scholar
  75. 75.
    Nel A, Xia T, Madler L, Li N (2006) Science 311:622–627CrossRefGoogle Scholar
  76. 76.
    Warheit DB (2008) Toxicol Sci 101:183–185CrossRefGoogle Scholar
  77. 77.
    Hood E (2004) Environ Health Perspect 112:A740–A749Google Scholar
  78. 78.
    Tekle C, van Deurs B, Sandvig K, Iversen TG (2008) Nano Lett 8:1858–1865CrossRefGoogle Scholar
  79. 79.
    Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B (2003) J Biol Chem 278:585–590CrossRefGoogle Scholar
  80. 80.
    Derfus AM, Chan WCW, Bhatia SN (2004) Nano Lett 4:11–18Google Scholar
  81. 81.
    Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706–1875CrossRefGoogle Scholar
  82. 82.
    Medintz IL, Pons T, Delehanty JB, Susumu K, Brunel FM, Dawson PE, Mattoussi H (2008) Bioconjug Chem 19:1785–1795CrossRefGoogle Scholar
  83. 83.
    Mok H, Park JW, Park TG (2008) Bioconjug Chem 19:797–801CrossRefGoogle Scholar
  84. 84.
    Silver J, Ou W (2005) Nano Lett 5:1445–1449CrossRefGoogle Scholar
  85. 85.
    Toita S, Hasegawa U, Koga H, Sekiya I, Muneta T, Akiyoshi K (2008) J Nanosci Nanotechnol 8:2279–2285CrossRefGoogle Scholar
  86. 86.
    Jaiswal JK, Goldman ER, Mattoussi H, Simon SM (2004) Nature Methods 1:73–78CrossRefGoogle Scholar
  87. 87.
    Rajan SS, Vu TQ (2006) Nano Lett 6:2049–2059CrossRefGoogle Scholar
  88. 88.
    Rajan SS, Liu HY, Vu TQ (2008) ACS Nano 2:1153–1166CrossRefGoogle Scholar
  89. 89.
    Dudu V, Ramcharan M, Gilchrist ML, Holland EC, Vazquez M (2008) J Nanosci Nanotechnol 8:2293–2300CrossRefGoogle Scholar
  90. 90.
    Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Nature Med 10:993–998CrossRefGoogle Scholar
  91. 91.
    Hasegawa U, Nomura SM, Kaul SC, Hirano T, Akiyoshi K (2005) Biochem Biophys Res Commun 331:917–921CrossRefGoogle Scholar
  92. 92.
    de la Fuente JM, Fandel M, Berry CC, Riehle M, Cronin L, Aitchison G, Curtis AS (2005) Chembiochem 6:989–991CrossRefGoogle Scholar
  93. 93.
    Clarke S, Nadeau J, Bahcheli D, Zhang Z, Hollmann C (2005) Conf Proc IEEE Eng Med Biol Soc 1:504–507Google Scholar
  94. 94.
    Clarke SJ, Hollmann CA, Zhang ZJ, Suffern D, Bradforth SE, Dimitrijevic NM, Minarik WG, Nadeau JL (2006) Nature Mater 5:409–417Google Scholar
  95. 95.
    Mattheakis LC, Dias JM, Choi YJ, Gong J, Bruchez MP, Liu J, Wang E (2004) Anal Biochem 327:200–208CrossRefGoogle Scholar
  96. 96.
    Akerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Proc Natl Acad Sci USA 99:12617–1262CrossRefGoogle Scholar
  97. 97.
    Stroh M, Zimmer JP, Duda DG, Levchenko TS, Cohen KS, Brown EB, Scadden DT, Torchilin VP, Bawendi MG, Fukumura D, Jain RK (2005) Nature Med 11:678–682CrossRefGoogle Scholar
  98. 98.
    Pellegrino T, Parak WJ, Boudreau R, Le Gros MA, Gerion D, Alivisatos AP, Larabell CA (2002) Differentiation 71:542–548CrossRefGoogle Scholar
  99. 99.
    Serge A, Bertaux N, Rigneault H, Marguet D (2008) Nature Methods 5:687694CrossRefGoogle Scholar
  100. 100.
    Parak WJ, Boudreau R, Le Gros M, Gerion D, Zanchet D, Micheel CM, Williams SC, Alivisatos AP, Larabell C (2002) Adv Mater 14:882–885CrossRefGoogle Scholar
  101. 101.
    Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Nat Biotechnol 18:410–414CrossRefGoogle Scholar
  102. 102.
    De la Fuente JM, Penades S (2006) Biochim Biophys Acta 1760:636–651Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • James B. Delehanty
    • 1
  • Hedi Mattoussi
    • 2
  • Igor L. Medintz
    • 1
  1. 1.Center for Bio/Molecular Science and EngineeringWashingtonUSA
  2. 2.Division of Optical SciencesU.S. Naval Research LaboratoryWashingtonUSA

Personalised recommendations