Analytical and Bioanalytical Chemistry

, Volume 393, Issue 1, pp 235–245 | Cite as

Water-compatible molecularly imprinted polymer for the selective recognition of fluoroquinolone antibiotics in biological samples

  • Elena Benito-Peña
  • Sofia Martins
  • Guillermo Orellana
  • María Cruz Moreno-BondiEmail author
Original Paper


A novel water-compatible molecularly imprinted polymer (MIP), prepared with enrofloxacin (ENR) as the template, has been optimised for the selective extraction of fluoroquinolone antibiotics in aqueous media. The results of a morphological characterisation and selectivity tests of the polymer material for ENR and related derivatives are reported. High affinity for the piperazine-based fluoroquinolones marbofloxacin, ciprofloxacin, norfloxacin and ofloxacin was observed, whereas no retention was found for nonrelated antibiotics. Various parameters affecting the extraction efficiency of the polymer have been optimised to achieve selective extraction of the antibiotics from real samples and to reduce nonspecific interactions. These findings resulted in a MISPE/HPLC-FLD method allowing direct extraction of the analytes from aqueous samples with a selective wash using just 50% (v/v) organic solvent. The method showed excellent recoveries and precision when buffered urine samples fortified at five concentration levels (25–250 ng mL−1 each) of marbofloxacin, ciprofloxacin, norfloxacin, enrofloxacin and sarafloxacin were tested (53–88%, RSD 1–10%, n = 3). Moreover, the biological matrix of the aqueous samples did not influence the preconcentration efficiency of the fluoroquinolones on the MIP cartridges; no significant differences were observed between the recovery rates of the antibiotics in buffer and urine samples. The detection limits of the whole process range between 1.9 and 34 ng mL–1 when 5-mL urine samples are processed. The developed method has been successfully applied to preconcentration of norfloxacin in urine samples of a medicated patient, demonstrating the ability of the novel MIP for selective extraction of fluoroquinolones in urine samples.


Water-compatible molecularly imprinted polymers Fluoroquinolones Antibiotics Solid-phase extraction Urine samples 



molecularly imprinted polymer


nonimprinted polymer


methacrylic acid


2-hydroxyethyl methacrylate


ethylene glycol dimethacrylate




















penicillin G








benzoic acid


high-performance liquid chromatography


fluorescence detector


diode array detector


liquid–liquid extraction


supercritical fluid extraction


pressurised liquid extraction


solid-phase extraction


molecularly imprinted solid-phase extraction


molecularly imprinted matrix solid-phase dispersion



This work has been funded by the European Marie Curie Programme (MRTN-CT-2006–033873), the Spanish MEC (grant CTQ2006–15610-C02), the Madrid Regional Government (ref. S-0505/AMB/0374), the ESF, the ERDF and UCM (CCG07-UCM/AMB-2932). The authors thank Prof. M.J. Torralvo for the N2 adsorption studies.


  1. 1.
    Debska J, Kot-Wasik A, Namiesnik J (2004) Crit Rev Anal Chem 67:34–51Google Scholar
  2. 2.
    Sanderson H, Johnson DJ, Rietsma T, Brain RA, Wilson CJ, Solomon KR (2004) Regul Toxicol Pharm 39:158–183CrossRefGoogle Scholar
  3. 3.
    Commission of the European Communities (2000) The white paper on food safety. European Commission, Brussels. Accessed 29 Jun 2008
  4. 4.
    Botsoglou NA, Fletouris DJ (2000) Drug residues in foods: pharmacology, food safety and analysis. Marcel Dekker, New YorkGoogle Scholar
  5. 5.
    Marazuela MD, Moreno-Bondi MC (2004) J Chromatogr A 1034:25–32CrossRefGoogle Scholar
  6. 6.
    Herranz S, Marazuela MD, Moreno-Bondi MC (2007) J Chromatogr A 1140:63–70CrossRefGoogle Scholar
  7. 7.
    Cañada-Cañada F, Espinosa-Mansilla A, Muñoz de la Peña A (2007) J Sep Sci 30:1242–1249CrossRefGoogle Scholar
  8. 8.
    Pena A, Chmielova D, Lino CM, Solich P (2007) J Sep Sci 30:2924–2928CrossRefGoogle Scholar
  9. 9.
    Lolo M, Pedreira S, Fente C, Vázquez BI, Franco CM, Cepeda A (2005) J Agric Food Chem 53:2849–52CrossRefGoogle Scholar
  10. 10.
    Gratacós-Cubarsí M, García-Regueiro JA, Castellari M (2007) Anal Bioanal Chem 387:1991–1998CrossRefGoogle Scholar
  11. 11.
    Turiel E, Bordin G, Rodríguez AR (2005) J Sep Sci 28:257–267CrossRefGoogle Scholar
  12. 12.
    San Martín B, Cornejo J, Iragüen D, Hidalgo H, Anadón A (2007) J Food Prot 70:1952–1957Google Scholar
  13. 13.
    Morales-Muñoz S, Luque-García JL, de Castro L (2004) J Chromatogr A 1059:25–31CrossRefGoogle Scholar
  14. 14.
    Schulte S, Ackermann T, Bertram N, Sauerbruch T, Paar WD (2006) J Chromatogr Sci 44:205–208Google Scholar
  15. 15.
    Siewert S (2006) J Pharm Biomed Anal 41:1360–1362CrossRefGoogle Scholar
  16. 16.
    Shim JH, Shen JY, Kim MR, Lee CJ, Kim IS (2003) J Agric Food Chem 51:7528–7532CrossRefGoogle Scholar
  17. 17.
    Garcés A, Zerzanová A, Kucera R, Barrón D, Barbosa J (2006) J Chromatogr A 1137:22–29CrossRefGoogle Scholar
  18. 18.
    Sellergren B (2001) Molecularly imprinted polymers. Man made mimics of antibodies and their applications in analytical chemistry. Elsevier, AmsterdamGoogle Scholar
  19. 19.
    Piletsky S, Turner A (2006) Molecular imprinting of polymers. Landes Bioscience, TexasGoogle Scholar
  20. 20.
    Yan M, Ramström O (2005) Molecularly imprinted materials: science and technology. Marcel Dekker, New YorkGoogle Scholar
  21. 21.
    Caro E, Marcé Rosa M, Cormack Peter AG, Sherrington DC, Borrul F (2006) Anal Chim Acta 562:145–151CrossRefGoogle Scholar
  22. 22.
    Urraca JL, Moreno-Bondi MC, Hall AJ, Sellergren B (2007) Anal Chem 79:695–701CrossRefGoogle Scholar
  23. 23.
    Turiel E, Martín-Esteban A, Tadeo JL (2007) J Chromatogr A 1172:97–104CrossRefGoogle Scholar
  24. 24.
    Guzmán-Vázquez de Prada A, Martínez-Ruiz P, Reviejo AJ, Pingarrón JM (2006) Anal Chim Acta 562:145–151CrossRefGoogle Scholar
  25. 25.
    Yan H, Qiao F, Row KH (2007) Anal Chem 79:8242–8248CrossRefGoogle Scholar
  26. 26.
    Xu Z, Kuang D, Liu L, Deng Q (2007) J Pharm Biomed Anal 45:54–61CrossRefGoogle Scholar
  27. 27.
    Yan H, Row KH, Yang G (2008) Talanta 75:227–232Google Scholar
  28. 28.
    Benito-Peña E, Partal-Rodera AI, León-González ME, Moreno-Bondi MC (2006) Anal Chim Acta 556:415–422CrossRefGoogle Scholar
  29. 29.
    Kim H, Kaczmarski K, Guiochon G (2005) Chem Eng Sci 60:5425–5444CrossRefGoogle Scholar
  30. 30.
    Oral E, Peppas NA (2001) Polym Prepr 42:111–112Google Scholar
  31. 31.
    Dirion B, Cobb Z, Schillinger E, Andersson LI, Sellergren B (2003) J Am Chem Soc 125:15101–15109CrossRefGoogle Scholar
  32. 32.
    Wang Z, Zhu Y, Ding S, He F, Beier RC, Li J, Jiang H, Feng C, Wan Y, Zhang S, Kai Z, Yang X, Shen J (2007) Anal Chem 79:4471–4483CrossRefGoogle Scholar
  33. 33.
    O´Mahony J, Molinelli A, Nolan K, Smyth MR, Mizaikoff B (2006) Biosensors Bioelec 21:1383–1392CrossRefGoogle Scholar
  34. 34.
    García Calzón JA, Díaz García ME (2007) Sens Actuators B 123:1180–1194CrossRefGoogle Scholar
  35. 35.
    Rampey AM, Umpleby RJ, Rushton GT, Iseman JC, Shah RN, Shimizu KD (2004) Anal Chem 76:1123–1133CrossRefGoogle Scholar
  36. 36.
    Caro E, Marcé RM, Cormack PAG, Sherrington DC, Borrull F (2006) J Sep Sci 29:1230–1236CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Elena Benito-Peña
    • 1
  • Sofia Martins
    • 1
  • Guillermo Orellana
    • 2
  • María Cruz Moreno-Bondi
    • 1
    Email author
  1. 1.Department of Analytical Chemistry, Faculty of ChemistryUniversidad Complutense de MadridMadridSpain
  2. 2.Department of Organic Chemistry, Faculty of ChemistryUniversidad Complutense de MadridMadridSpain

Personalised recommendations