Analytical and Bioanalytical Chemistry

, Volume 393, Issue 1, pp 377–385 | Cite as

Isotopic fractionation of mercury induced by reduction and ethylation

  • Lu YangEmail author
  • Ralph E. Sturgeon
Original Paper


Isotope ratio measurements characterizing 202Hg/200Hg in NIST SRM 3133 Mercury Standard Solution were undertaken by multicollector inductively coupled plasma mass spectrometry employing NIST SRM 997 Tl for mass bias correction by use of the slope and the intercept obtained from a natural logarithmic plot of each session of measurements of 202Hg/200Hg against 205Tl/203Tl. The calculated value of 1.285333 ± 0.000192 (mean and one standard deviation, n = 40) for the mass bias corrected 202Hg/200Hg was then used for mass bias correction of other Hg isotope pairs. Ratios of 0.015337 ± 0.000011, 1.68770 ± 0.00054, 2.3056 ± 0.0015, 1.3129 ± 0.0013, 2.9634 ± 0.0038, and 0.67937 ± 0.0013 (expanded uncertainty, k = 2) were obtained for 196Hg/198Hg, 199Hg/198Hg, 200Hg/198Hg, 201Hg/198Hg, 202Hg/198Hg, and 204Hg/198Hg, respectively. Reduction of Hg(II) to Hg0 in solutions of SRM 3133 was then undertaken using SnCl2, NaBH4, UV photolysis in the presence of formic acid, and ethylation of Hg(II) using NaBEt4. These reactions induced significant isotope fractionation with maximum values of 1.17 ± 0.07, 1.08 ± 0.09, 1.34 ± 0.07, and 3.59 ± 0.09‰ (one standard deviation, 1SD, n = 5) for δ 202/198Hg relative to the initial isotopic composition in the solution following 85–90% reduction of the Hg by SnCl2, NaBH4, UV photolysis, and ethylation with NaBEt4, respectively. Mass-dependent fractionation was found to be dominant for all reduction processes.


Mass dependence of fractionation for all samples from Hg fractionation experiments using NaBEt4. Solid lines are the theoretically predicted MDF based on δ202/198 Hg using equation 7. Error bars displayed are one standard deviation of the mean of 5 measurements of each sample


Isotope ratios Multicollector inductively coupled plasma mass spectrometry Mass-independent fractionation Isotopic fractionation Mercury reduction Mercury ethylation 


  1. 1.
    Craig PJ (1986) Organometallic compounds in the environment: principles and reactions. Longman, HarlowGoogle Scholar
  2. 2.
    Johnson CM, Beard BL, Albaréde F (2004) In: Johnson CM, Beard BL, Albaréde F (eds) Geochemistry of non-traditional stable isotopes. Reviews in mineralogy and geochemistry, vol 55. Mineralogical Society of America and the Geochemical Society, pp 1–24Google Scholar
  3. 3.
    Evans RD, Hintelmann H, Dillon PJ (2001) J Anal At Spectrom 16:1064–1069CrossRefGoogle Scholar
  4. 4.
    Lauretta DS, Klaue B, Blum JD Buseck PR (2001) Geochim Cosmochim Acta 65:2807–2818CrossRefGoogle Scholar
  5. 5.
    H Hintelmann, S Lu (2003) Analyst 128:635–639CrossRefGoogle Scholar
  6. 6.
    Jackson TA, Muir D, Vincent WF (2004) Environ Sci Technol 38:2813–2821CrossRefGoogle Scholar
  7. 7.
    Smith CN, Kesler SE, Klaue B, Blum JD (2005) Geology 33:825–828CrossRefGoogle Scholar
  8. 8.
    Xie Q, Lie S, Evans D, Dillon P, Hintelmann HJ (2005) Anal At Spectrom 20:515–522CrossRefGoogle Scholar
  9. 9.
    Ridley WI, Stetson SJ (2006) Appl Geochem 21:1889–1899CrossRefGoogle Scholar
  10. 10.
    Kritee K, Blum JD, Johnson MW, Bergquist BA, Barkay T (2007) Environ Sci Technol 41:1889–1895CrossRefGoogle Scholar
  11. 11.
    Blum JD, Bergquist BA (2007) Anal Bioanal Chem 388:353–359CrossRefGoogle Scholar
  12. 12.
    Malinovsky D, Sturgeon RE, Yang L (2008) Anal Chem 80:2548–2555CrossRefGoogle Scholar
  13. 13.
    Zheng W, Foucher D, Hintelmann H (2007) J Anal At Spectrom 22:1097–1104CrossRefGoogle Scholar
  14. 14.
    Bergquist BA, Blum JD (2007) Science 318:417–420CrossRefGoogle Scholar
  15. 15.
    Jackson TA (2006) Geochim Cosmochim Acta 70:A284–A284Google Scholar
  16. 16.
    Jackson TA, Whittle DM, Evans MS, Muir DCG (2008) Appl Geochem 23:547–571CrossRefGoogle Scholar
  17. 17.
    Sonke JE, Zambardi T, Toutain JP (2008) J Anal At Spectrom 23:569–573CrossRefGoogle Scholar
  18. 18.
    Epov VN, Rodriguez-Gonzalez P, Sonke JE, Tessier E, Amoureux D, Bourgoin LM, Donard OFX (2008) Anal Chem 80:3530–3538CrossRefGoogle Scholar
  19. 19.
    Dzurko M, Foucher D, Hintelmann H (2008) Anal Bioanal Chem doi: 10.1007/s00216-00802165-y
  20. 20.
    Galer SJG (1999) Chem Geol 157:255–274CrossRefGoogle Scholar
  21. 21.
    Dědina J, Tsalev DL (1995) Hydride generation atomic absorption spectrometry. Wiley, ChichesterGoogle Scholar
  22. 22.
    Sturgeon RE, Mester Z (2002) Appl Spectrosc 56:202A–213ACrossRefGoogle Scholar
  23. 23.
    Sturgeon RE, Willie SN, Mester Z (2006) Anal At Spectrom 21:263–265CrossRefGoogle Scholar
  24. 24.
    Russell WA, Papantastassiou DA, Tombrello TA (1978) Geochim Cosmochim Acta 42:1075–1090CrossRefGoogle Scholar
  25. 25.
    Maréchal N, Télouk P, Albarède F (1999) Chem Geol 156:251–273CrossRefGoogle Scholar
  26. 26.
    Albarède F, Télouk P, Blichert-Toft J, Boyet M, Agranier A, Nelson B (2004) Geochim Cosmochim Acta 68:2725–2744CrossRefGoogle Scholar
  27. 27.
    White WM, Albarède F, Télouk P (2000) Chem Geol 167:257–270CrossRefGoogle Scholar
  28. 28.
    International Organisation for Standardisation (1995) Guide to the expression of uncertainty in measurement. International Organisation for Standardisation, GenevaGoogle Scholar
  29. 29.
    Ellison SLR, Rosslein M, Williams A (2001) Quantifying uncertainty in analytical measurements, 2nd edn. EURACHEM/CITAC, pp 87–94Google Scholar
  30. 30.
    Young ED, Galy A, Nagahara H (2002) Geochim Cosmochim Acta 66:1095–1104CrossRefGoogle Scholar
  31. 31.
    Yang L, Peter C, Panne U, Sturgeon RE (2008) J Anal At Spectrom (in press)Google Scholar
  32. 32.
    Schauble EA (2007) Geochim Cosmochim Acta 71:2170–2189CrossRefGoogle Scholar

Copyright information

© Crown copyright in right of Canada  2008

Authors and Affiliations

  1. 1.Institute for National Measurement StandardsNational Research Council CanadaOttawaCanada

Personalised recommendations