Advertisement

Analytical and Bioanalytical Chemistry

, Volume 393, Issue 3, pp 921–928 | Cite as

Electromembrane extraction of basic drugs from untreated human plasma and whole blood under physiological pH conditions

  • Astrid Gjelstad
  • Knut Einar Rasmussen
  • Stig Pedersen-Bjergaard
Original Paper

Abstract

The present work describes the first systematic study of electromembrane extraction (EME) from biological matrices under physiological conditions. Six basic drugs with protein binding in the range of 20–97% were extracted from untreated human plasma and whole blood through a supported liquid membrane (SLM) consisting of 1-ethyl-2-nitrobenzene impregnated in the walls of a hollow fiber, and into an acidified aqueous solution inside the lumen of the fiber. The electrical potential difference over the membrane reduced the protein binding of the drugs and transported the free drug fraction over the membrane. Recoveries in the range 25–65% were obtained with 10-min extraction time and an applied voltage of only 10 V over the SLM. Interday precision better than 20% RSD and linearity in the range 0.5–10 µg/mL were obtained for nortriptyline and methadone. Extraction from untreated whole blood was also demonstrated with recoveries in the range 19–51%.

Keywords

Sample preparation Supported liquid membranes Electromembrane extraction Basic drugs Physiological conditions 

References

  1. 1.
    Ulrich S (2000) J Chromatogr A 902:167–194CrossRefGoogle Scholar
  2. 2.
    Musteata FM, Pawliszyn J (2007) TrAC Trends Anal Chem 26:36–45CrossRefGoogle Scholar
  3. 3.
    Pedersen-Bjergaard S, Rasmussen KE (1999) Anal Chem 71:2650–2656CrossRefGoogle Scholar
  4. 4.
    Pedersen-Bjergaard S, Rasmussen KE (2005) J Chromatogr B 817:3–12CrossRefGoogle Scholar
  5. 5.
    Ugland HG, Krogh M, Rasmussen KE (2000) J Chromatogr B 749:85–92CrossRefGoogle Scholar
  6. 6.
    Ugland HG, Krogh M, Reubsaet L (2003) J Chromatogr B 798:127–135CrossRefGoogle Scholar
  7. 7.
    Halvorsen TG, Pedersen-Bjergaard S, Rasmussen KE (2001) J Chromatogr B 760:219–226CrossRefGoogle Scholar
  8. 8.
    Pedersen-Bjergaard S, Rasmussen KE (2006) J Chromatogr A 1109:183–190CrossRefGoogle Scholar
  9. 9.
    Gjelstad A, Andersen TM, Rasmussen KE, Pedersen-Bjergaard S (2007) J Chromatogr A 1157:38–45CrossRefGoogle Scholar
  10. 10.
    Gjelstad A, Rasmussen KE, Pedersen-Bjergaard S (2007) J Chromatogr A 1174:104–111CrossRefGoogle Scholar
  11. 11.
    Middelthon-Bruer TM, Gjelstad A, Rasmussen KE, Pedersen-Bjergaard S (2008) J Sep Sci 31:753–759CrossRefGoogle Scholar
  12. 12.
    Gjelstad A, Rasmussen KE, Pedersen-Bjergaard S (2006) J Chromatogr A 1124:29–34CrossRefGoogle Scholar
  13. 13.
    Balchen M, Gjelstad A, Rasmussen KE, Pedersen-Bjergaard S (2007) J Chromatogr A 1152:220–225CrossRefGoogle Scholar
  14. 14.
    Balchen M, Reubsaet L, Pedersen-Bjergaard S (2008) J Chromatogr A 1194:143–149CrossRefGoogle Scholar
  15. 15.
    Kjelsen IJO, Gjelstad A, Rasmussen KE, Pedersen-Bjergaard S (2008) J Chromatogr A 1180:1–9CrossRefGoogle Scholar
  16. 16.
    Ho TS, Pedersen-Bjergaard S, Rasmussen KE (2002) Analyst 127:608–613CrossRefGoogle Scholar
  17. 17.
    Grond S, Sablotzki A (2004) Clin Pharmacokinet 43:879–923CrossRefGoogle Scholar
  18. 18.
    Saiakhov RD, Stefan LR, Klopman G (2000) Perspect Drug Discov 19:133–155CrossRefGoogle Scholar
  19. 19.
    Yamazaki K, Kanaoka M (2004) J Pharm Sci 93:1480–1494CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Astrid Gjelstad
    • 1
  • Knut Einar Rasmussen
    • 1
  • Stig Pedersen-Bjergaard
    • 1
  1. 1.School of PharmacyUniversity of OsloOsloNorway

Personalised recommendations