Advertisement

Analytical and Bioanalytical Chemistry

, Volume 392, Issue 3, pp 439–449 | Cite as

MALDI-TOF mass signatures for differentiation of yeast species, strain grouping and monitoring of morphogenesis markers

  • Jiang Qian
  • Jim E. Cutler
  • Richard B. Cole
  • Yang Cai
Original Paper

Abstract

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is demonstrated to be a potentially useful tool for the rapid identification of yeasts, the grouping of Candida albicans strains, and the monitoring of germ tube-specific markers. Co-crystallized with sinapinic acid as the MALDI matrix, intact yeast cells yielded a sufficient number of medium-sized ions (4–15 kDa) in MALDI mass spectra to provide “mass signatures” that were diagnostic of strain type. For most isolates, the mass signatures were affected by the growth medium, length of incubation and the cell preparation method. While the overall past success of this methodology for fungal cells has been relatively low compared to its application to bacteria, fixing the yeast cells in 50% methanol inactivated the cells, reduced cell aggregation in aqueous suspension solution, and more importantly, it significantly improved the mass signature quality. This simple but critical advance in sample treatment improved mass spectrometric signal-to-noise ratios and allowed the identification of yeasts by a mass signature approach. Under optimized conditions, Candida species (C. albicans, C. glabrata, C. krusei, C. kefyr), Aspergillus species (A. terreus, A. fumigatus, A. syndowii) and other yeast genera (Cryptococcus neoformans, Saccharomyces cerevisiae and a Rhodotorula sp.) could be distinguished. Within the C. albicans species, several common ions in the m/z 5,000–10,000 range were apparent in the mass spectra of all tested strains. In addition to shared ions, the mass spectra of individual C. albicans strains permitted grouping of the strains. Principal component analysis (PCA) was employed to confirm spectral reproducibility and C. albicans strain grouping by mass signatures. Finally, C. albicans germ tubes produced MALDI-TOF mass signatures that differed from yeast forms of this species. This is a rapid, sensitive and simple method for identifying yeasts, grouping strains and following the morphogenesis of C. albicans.

Keywords

Mass signature MALDI-TOF mass spectrometry Alcohol fixation Yeast differentiation Principal component analysis 

Notes

Acknowledgement

The authors would like to thank Patrick Lambert and Dr. Miriam Corti for their help in yeast sample preparations. Support for the research was provided by the Research Institute for Children, Children’s Hospital, New Orleans, and the Louisiana Board of Regents through HEF (2001-06)-08.

References

  1. 1.
    Enache-Angoulvant A, Hennequin C (2005) Clin Infect Dis 41:1559–1568CrossRefGoogle Scholar
  2. 2.
    Hazen KC (1995) Clin Microbiol Rev 8:462–478Google Scholar
  3. 3.
    Perfect JR, Casadevall A (2002) Infect Dis Clin North Am 16:837–874CrossRefGoogle Scholar
  4. 4.
    Ruhnke M (2006) Curr Drug Targets 7:495–504CrossRefGoogle Scholar
  5. 5.
    Pincus DH, Orenga S, Chatellier S (2007) Medical Mycol 45:97–121CrossRefGoogle Scholar
  6. 6.
    Shepard JR, Addison RM, Alexander BD, Della-Latta P, Gherna M, Haase G, Hall G, Johnson JK, Merz WG, Peltroche-Llacsahuanga H, Stender H, Venezia RA, Wilson D, Procop GW, Wu F, Fiandaca MJ (2007) J Clin Microbiol (in press)Google Scholar
  7. 7.
    Timmins EM, Howell SA, Alsberg BK, Noble WC, Goodacre R (1998) J Clin Microbiol 36:367–374Google Scholar
  8. 8.
    Himmelreich U, Somorjai RL, Dolenko B, Lee OC, Daniel HM, Murray R, Mountford CE, Sorrell TC (2003) Appl Environ Microbiol 69:4566–4574CrossRefGoogle Scholar
  9. 9.
    Himmelreich U, Somorjai RL, Dolenko B, Daniel HM, Sorrell TC (2005) FEMS Microbiol Lett 251:327–332CrossRefGoogle Scholar
  10. 10.
    Ibelings MS, Maquelin K, Endtz HP, Bruining HA, Puppels GJ (2005) Clin Microbiol Infect 11:353–358CrossRefGoogle Scholar
  11. 11.
    Maquelin K, Choo-Smith LP, Endtz HP, Bruining HA, Puppels GJ (2002) J Clin Microbiol 40:594–600CrossRefGoogle Scholar
  12. 12.
    Tintelnot K, Haase G, Seibold M, Bergmann F, Staemmler M, Franz T, Naumann D (2000) J Clin Microbiol 38:1599–1608Google Scholar
  13. 13.
    Maquelin K, Choo-Smith LP, van Vreeswijk T, Endtz HP, Smith B, Bennett R, Bruining HA, Puppels GJ (2000) Anal Chem 72:12–19CrossRefGoogle Scholar
  14. 14.
    Fenselau C, Demirev PA (2001) Mass Spectrom Rev 20:157–171CrossRefGoogle Scholar
  15. 15.
    Gantt SL, Valentine NB, Saenz AJ, Kingsley MT, Wahl KL (1999) J Am Soc Mass Spectrom 10:1131–1137CrossRefGoogle Scholar
  16. 16.
    Holland RD, Wilkes JG, Rafii F, Sutherland JB, Persons CC, Voorhees KJ, Lay JO (1996) Rapid Commun Mass Spectrom 10:1227–1232CrossRefGoogle Scholar
  17. 17.
    Krishnamurthy T, Ross PL, Rajamani U (1996) Rapid Commun Mass Spectrom 10:883–888CrossRefGoogle Scholar
  18. 18.
    Evason DJ, Claydon MA, Gordon DB (2001) J Am Soc Mass Spectrom 12:49–54CrossRefGoogle Scholar
  19. 19.
    Haag AM, Taylor SN, Johnston KH, Cole RB (1998) J Mass Spectrom 33:750–756CrossRefGoogle Scholar
  20. 20.
    Hathout Y, Demirev PA, Ho YP, Bundy JL, Ryzhov V, Sapp L, Stutler J, Jackman J, Fenselau C (1999) Appl Environ Microbiol 65:4313–4319Google Scholar
  21. 21.
    Horneffer V, Haverkamp J, Janssen HG, Notz R (2004) J Am Soc Mass Spectrom 15:1444–1454CrossRefGoogle Scholar
  22. 22.
    Lay JO, Holland RD (2000) Methods Mol Biol 146:461–487Google Scholar
  23. 23.
    Madonna AJ, Basile F, Furlong E, Voorhees KJ (2001) Rapid Commun Mass Spectrom 15:1068–1074CrossRefGoogle Scholar
  24. 24.
    Marvin-Guy LF, Parche S, Wagniere S, Moulin J, Zink R, Kussmann M, Fay LB (2004) J Am Soc Mass Spectrom 15:1222–1227CrossRefGoogle Scholar
  25. 25.
    Ryzhov V, Hathout Y, Fenselau C (2000) Appl Environ Microbiol 66:3828–3834CrossRefGoogle Scholar
  26. 26.
    Shaw EI, Moura H, Woolfitt AR, Ospina M, Thompson HA, Barr JR (2004) Anal Chem 76:4017–4022CrossRefGoogle Scholar
  27. 27.
    Vargha M, Takáts Z, Konopka A, Nakatsu CH (2006) J Microbiol Methods 66:399–409CrossRefGoogle Scholar
  28. 28.
    Williams TL, Andrzejewski D, Lay JO, Musser SM (2003) J Am Soc Mass Spectrom 14:342–351CrossRefGoogle Scholar
  29. 29.
    Wunschel SC, Jarman KH, Petersen CE, Valentine NB, Wahl KL, Schauki D, Jackman J, Nelson CP, White E (2005) J Am Soc Mass Spectrom 16:456–462CrossRefGoogle Scholar
  30. 30.
    Maier T, Klepel S, Renner U, Kostrzewa M (2006) Nat Method 3. doi: 10.1038/nmeth1870
  31. 31.
    Amiri-Eliasi BJ, Fenselau C (2001) Anal Chem 73:5228–5231CrossRefGoogle Scholar
  32. 32.
    Chen HY, Chen YC (2005) Rapid Commun Mass Spectrom 19:3564–3568CrossRefGoogle Scholar
  33. 33.
    Jackson KA, Edwards-Jones V, Sutton CW, Fox AJ (2005) J Microbiol Methods 62:273–284CrossRefGoogle Scholar
  34. 34.
    Li TY, Liu BH, Chen YC (2000) Rapid Commun Mass Spectrom 14:2393–2400CrossRefGoogle Scholar
  35. 35.
    Valentine NB, Wahl JH, Kingsley MT, Wahl KL (2002) Rapid Commun Mass Spectrom 16:1352–1357CrossRefGoogle Scholar
  36. 36.
    Whelan WL, Delga JM, Wadsworth E, Walsh TJ, Kwonchung KJ, Calderone R, Lipke PN (1990) Infect Immun 58:1552–1557Google Scholar
  37. 37.
    Han YM, Cutler JE (1995) Infect Immun 63:2714–2719Google Scholar
  38. 38.
    Qian QF, Jutila MA, Van Rooijen N, Cutler JE (1994) J Immunol 152:5000–5008Google Scholar
  39. 39.
    Benson ES, Filler SC, Berman J (2002) Eukaryot Cell 1:787–798CrossRefGoogle Scholar
  40. 40.
    Palmer GE, Kelly MN, Sturtevant JE (2005) Eukaryot Cell 4:1677–1686CrossRefGoogle Scholar
  41. 41.
    Xiang F, Beavis RC (1994) Rapid Commun Mass Spectrom 8:199–204CrossRefGoogle Scholar
  42. 42.
    Vorm O, Roepstorff P, Mann M (1994) Anal Chem 66:3281–3287CrossRefGoogle Scholar
  43. 43.
    Karas M, Hillenkamp F (1988) Anal Chem 60:2299–2301CrossRefGoogle Scholar
  44. 44.
    Harrington PD, Street TE, Voorhees KJ, Dibrozolo FR, Odom RW (1989) Anal Chem 61:715–719CrossRefGoogle Scholar
  45. 45.
    Harrington PD, Voorhees KJ (1990) Anal Chem 62:729–734CrossRefGoogle Scholar
  46. 46.
    Sherburn RE, Jenkins RO (2003) Spectroscopy 17:31–38Google Scholar
  47. 47.
    Arnold RJ, Reilly JP (1998) Rapid Commun Mass Spectrom 12:630–636CrossRefGoogle Scholar
  48. 48.
    Saenz AJ, Petersen CE, Valentine NB, Gantt SL, Jarman KH, Kingsley MT, Wahl KL (1999) Rapid Commun Mass Spectrom 13:1580–1585CrossRefGoogle Scholar
  49. 49.
    Chaffin WL, Lopez-Ribot JL, Casanova M, Gozalbo D, Martinez JP (1998) Microbiol Mol Biol Rev 62:130–180Google Scholar
  50. 50.
    Farmer TB, Caprioli RM (1998) J Mass Spectrom 33:697–704CrossRefGoogle Scholar
  51. 51.
    Woods AS, Buchsbaum JC, Worrall TA, Berg JM, Cotter RJ (1995) Anal Chem 67:4462–4465CrossRefGoogle Scholar
  52. 52.
    Strupat K, Sagi D, Bonisch H, Schafer G, Peter-Katalinic J (2000) Analyst 125:653–657CrossRefGoogle Scholar
  53. 53.
    Cai Y, Jiang YJ, Cole RB (2003) Anal Chem 75:1638–1644CrossRefGoogle Scholar
  54. 54.
    Beavis RC, Chait BT (1989) Rapid Commun Mass Spectrom 3:432–435Google Scholar
  55. 55.
    Beavis RC, Chait BT (1990) Proc Natl Acad Sci USA 87:6873–6877CrossRefGoogle Scholar
  56. 56.
    Gluckmann M, Pfenninger A, Kruger R, Thierolf M, Karas M, Horneffer V, Hillenkamp F, Strupat K (2001) Int J Mass Spectrom 210:121–132CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jiang Qian
    • 1
    • 3
  • Jim E. Cutler
    • 1
    • 2
  • Richard B. Cole
    • 3
  • Yang Cai
    • 1
    • 3
  1. 1.Children’s Hospital, New Orleans—The Research Institute for ChildrenNew OrleansUSA
  2. 2.Department of Pediatrics and Microbiology, Immunology and ParasitologyLSU Health Science Center, New OrleansNew OrleansUSA
  3. 3.Department of ChemistryUniversity of New OrleansNew OrleansUSA

Personalised recommendations