Analytical and Bioanalytical Chemistry

, Volume 393, Issue 2, pp 543–554

Enzyme-functionalized mesoporous silica for bioanalytical applications

Review

Abstract

The unique properties of mesoporous silica materials (MPs) have attracted substantial interest for use as enzyme-immobilization matrices. These features include high surface area, chemical, thermal, and mechanical stability, highly uniform pore distribution and tunable pore size, high adsorption capacity, and an ordered porous network for free diffusion of substrates and reaction products. Research demonstrated that enzymes encapsulated or entrapped in MPs retain their biocatalytic activity and are more stable than enzymes in solution. This review discusses recent advances in the study and use of mesoporous silica for enzyme immobilization and application in biosensor technology. Different types of MPs, their morphological and structural characteristics, and strategies used for their functionalization with enzymes are discussed. Finally, prospective and potential benefits of these materials for bioanalytical applications and biosensor technology are also presented.

Figure

Enzyme-functionalized mesoporous silica fibers and their integration in a biosensor design. The immobilization process takes place essentially in the silica micropores.

Keywords

Mesoporous silica Enzyme Immobilization Biosensors 

References

  1. 1.
    Hartmann M (2005) Chem Mater 17:4577–4593CrossRefGoogle Scholar
  2. 2.
    Lee C-H, Lang J, Yen C-W, Shih P-C, Lin T-S, Mou C-Y (2005) J Phys Chem B 109:12277–12286CrossRefGoogle Scholar
  3. 3.
    Kresge CT, Leonowicz M, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710–712CrossRefGoogle Scholar
  4. 4.
    Johansson E, Zink JI (2007) J Am Chem Soc 129:14437–14443CrossRefGoogle Scholar
  5. 5.
    Ozin GA, Khushalani D, Oliver S, Shen GC, Sokolov IYu, Yang H (1997) J Chem Soc Dalton Trans 3941–3952Google Scholar
  6. 6.
    Yang M, Sokolov IYu, Coombs N, Kresge CT, Ozin GA (1999) Adv Mater 11:1427–1431CrossRefGoogle Scholar
  7. 7.
    Sokolov IYu, Ozin GA, Henderson GS, Yang H, Coombs N (1997) Adv Mater 9:917–921CrossRefGoogle Scholar
  8. 8.
    Everett DH (1994) Basic principles of colloid science. Royal Society of Chemistry, CambridgeGoogle Scholar
  9. 9.
    Evans DF, Wennerstrom H (1994) The colloids domain where physics, chemistry, biology, and technology meet. VCH, New YorkGoogle Scholar
  10. 10.
    Melosh NA, Davidson P, Chmelka BF (2000) J Am Chem Soc 122:823–829CrossRefGoogle Scholar
  11. 11.
    Yang H, Coombs N, Sokolov IYu, Ozin GA (1996) Nature 381:589–592CrossRefGoogle Scholar
  12. 12.
    Suzuki TM, Nakamura T, Fukumoto K, Yamamoto M, Akimoto Y, Yano K (2008) J Mol Catal A 280:224–232CrossRefGoogle Scholar
  13. 13.
    Kim JH, Yoon SB, Kim JY, Chae YB, Yu JS (2008) Colloids Surf A 313:77–81CrossRefGoogle Scholar
  14. 14.
    Yang H, Coombs N, Sokolov IYu, Ozin, GA (1997) J Mater Chem 7:1285–1290CrossRefGoogle Scholar
  15. 15.
    Calvert JM, Chandoross EA, Malloul TE (1997) Supramol Sci 4:1–23CrossRefGoogle Scholar
  16. 16.
    Bolterauer H, Limbach H-J, Tuszynski JA (1999) J Biol Phys 25:1–22CrossRefGoogle Scholar
  17. 17.
    Schmidt-Winkel P, Yang P, Margolese DI, Chmelka BF, Stucky GD (1999) Adv Mater 11:303–307CrossRefGoogle Scholar
  18. 18.
    Zhao D, Yang P, Chmelka BF, Stucky GD (1999) Chem Mater 11:1174–1178CrossRefGoogle Scholar
  19. 19.
    El-Safty SA (2008) J Colloid Interface Sci 319:477–488CrossRefGoogle Scholar
  20. 20.
    Lei C, Shin Y, Liu S, Ackerman EJ (2007) Nano Lett 7:1050–1053CrossRefGoogle Scholar
  21. 21.
    Takahashi H, Li B, Sasaki T, Miyazaki C, Kajino T, Inagaki S (2001) Micro Meso Mat 44/45:755–762CrossRefGoogle Scholar
  22. 22.
    Yang X-Y, Li Z-Q, Liu B, Klein-Hofmann A, Tian G, Feng Y-F, Ding Y, Su D, Xiao F-S (2006) Adv Mater 18:410–414CrossRefGoogle Scholar
  23. 23.
    Diaz JF, Balkus K Jr (1996) J Mol Catal B 2:115–126CrossRefGoogle Scholar
  24. 24.
    Hudson S, Magner E, Cooney J, Hodnett BK (2005) J Phys Chem B 109:19496–19506CrossRefGoogle Scholar
  25. 25.
    Tan B, Lehmler HJ, Vyas SM, Knutson BL, Rankin SE (2005) Nanotechnology 16:S502–S507CrossRefGoogle Scholar
  26. 26.
    Kim TW, Kleitz F, Paul B, Ryoo R (2005) J Am Chem Soc 127:7601–7610CrossRefGoogle Scholar
  27. 27.
    Hamoudi S, Belkacemi K (2004) J Porous Mater 11:47–54CrossRefGoogle Scholar
  28. 28.
    Matos JR, Mercuri LP, Kruk M, Jaroniec M (2001) Chem Mater 13:1726–1731CrossRefGoogle Scholar
  29. 29.
    Lei C, Shin Y, Liu S, Ackerman EJ (2002) J Am Chem Soc 124:11242–11243CrossRefGoogle Scholar
  30. 30.
    Dunker AK, Fernandez A (2007) Trends Biotechnol 25:189–190CrossRefGoogle Scholar
  31. 31.
    Ehrburger-Dolle F, Morfin I, Geissler E, Bley F, Livet F, Vix-Guterl C, Saadallah S, Parmentier J, Reda M, Patarin J, Iliescu M, Werckmann J (2003) Langmuir 19:4303–4308CrossRefGoogle Scholar
  32. 32.
    Ryoo R, Ko CH, Kruk M, Antochshuk V, Jaroniec M (2000) J Phys Chem B 104:11465–11471CrossRefGoogle Scholar
  33. 33.
    Yiu HHP, Wright PA (2005) J Mater Chem 15:3690–3700CrossRefGoogle Scholar
  34. 34.
    Blanco RM, Terreros P, Fernandez-Perez M, Otero C, Diaz- Gonzalez G (2004) J Mol Catal B 30:83–93CrossRefGoogle Scholar
  35. 35.
    Vinu A, Murugesan V, Tangermann O, Hartmann M (2004) Chem Mater 16:3056–3065CrossRefGoogle Scholar
  36. 36.
    Wang Y, Caruso F (2004) Chem Commun 1528–1529Google Scholar
  37. 37.
    Wang Y, Caruso F (2005) Chem Mater 17:953–961CrossRefGoogle Scholar
  38. 38.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552CrossRefGoogle Scholar
  39. 39.
    Inagaki S, Fukushima Y, Kuroda K (1993) Chem Commun 680–682Google Scholar
  40. 40.
    Kruk M, Jaroniec M, Ko CH, Ryoo R (2000) Chem Mater 12:1961–1968CrossRefGoogle Scholar
  41. 41.
    Jana SK, Nishida R, Shindo K, Kugita T, Namba S (2004) Micropor Mesopor Mater 68:133–142CrossRefGoogle Scholar
  42. 42.
    Matos JR, Kruk M, Mercuri LP, Jaroniec M, Zhao L, Kamiyama T, Terasaki O, Pinnavaia TJ, Liu Y (2003) J Am Chem Soc 125:821–829CrossRefGoogle Scholar
  43. 43.
    Lim MH, Stein A (1999) Chem Mater 11:3285–3295CrossRefGoogle Scholar
  44. 44.
    Zhang X, Guan R-F, Wu D-Q, Chan K-Y (2005) J Mol Catal B 33:43–50CrossRefGoogle Scholar
  45. 45.
    Han L, Sakamoto Y, Terasaki O, Li Y, Che S (2007) J Mater Chem 17:1216–1221CrossRefGoogle Scholar
  46. 46.
    Sujandi Park S-E, Han D-S, Han S-C, Jin M-J, Ohsuna T (2006) Chem Commun 4131–4133Google Scholar
  47. 47.
    Stein A, Melde BJ, Schroden RC (2000) Adv Mater 12:1403–1419CrossRefGoogle Scholar
  48. 48.
    Price PM, Clark JH, Macquarrie DJ (2000) J Chem Soc, Dalton Trans 101–110Google Scholar
  49. 49.
    Macquarrie DJ, Jackson DB, Mdoe JEG, Clark JH (1999) New J Chem 23:539–544CrossRefGoogle Scholar
  50. 50.
    Gadre SY, Gouma PI (2006) J Am Ceram Soc 89:2987–3308CrossRefGoogle Scholar
  51. 51.
    Zhou HX (2004) J Mol Recognit 17:368–375CrossRefGoogle Scholar
  52. 52.
    Lee CH, Lang J, Yen CW, Shih PC, Lin TS, Mou CY (2005) Phys Chem B, 109:12277–12286CrossRefGoogle Scholar
  53. 53.
    Vinu A, Mori T, Ariga K (2006) Sci Technol Adv Mater 7:753–771CrossRefGoogle Scholar
  54. 54.
    He J, Song Z, Ma H, Yang L, Guo C (2006) J Mater Chem 16:4307–4315CrossRefGoogle Scholar
  55. 55.
    Washmon-Kriel L, Jimenez VL, Balkus KJ Jr (2000) J Mol Catal B 10:453–469CrossRefGoogle Scholar
  56. 56.
    Han Y, Lee SS, Ying JY (2006) Chem Mater 18:643–649CrossRefGoogle Scholar
  57. 57.
    Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Angew Chem Int Ed 45:3216–3251CrossRefGoogle Scholar
  58. 58.
    Ozin GA, Arsenault A (2005) Nanochemistry: a chemical approach to nanomaterials. Royal Society of ChemistryGoogle Scholar
  59. 59.
    Liu J, Li C, Yang Q, Yang J, Li C (2007) Langmuir 23:7255–7262CrossRefGoogle Scholar
  60. 60.
    Sokolov I, Kievsky Y (2005) Stud Surf Sci Catal 56:33–443Google Scholar
  61. 61.
    Wang B, Shan W, Zhang YH, Xia JC, Yang WL, Gao Z, Tang Y (2005) Adv Mater 17:578–582CrossRefGoogle Scholar
  62. 62.
    Sokolov I, Kievsky Y, Kaszpurenko JM (2007) Small 3:419–423CrossRefGoogle Scholar
  63. 63.
    Naik SP, Elangovan SP, Okubo T, Sokolov I (2007) J Phys Chem C 111:11168–11173CrossRefGoogle Scholar
  64. 64.
    Kievsky Y, Sokolov I (2005) IEEE T Nanotechnol 4:490–494CrossRefGoogle Scholar
  65. 65.
    Zhao DY, Sun JY, Li QZ, Stucky GD (2000) Chem Mater 12:275–279CrossRefGoogle Scholar
  66. 66.
    Vinu A, Murugesan V, Hartmann M (2004) J Phys Chem B 108:7323–7330CrossRefGoogle Scholar
  67. 67.
    Urabe Y, Shiomi T, Itoh T, Kawai A, Tsunoda T, Mizukami F, Sakaguchi K (2007) Chem Bio Chem 8:668–674Google Scholar
  68. 68.
    Takahashi H, Li B, Sasaki T, Miyazaki C, Kajino T, Inagaki S (2000) Chem Mater 12:3301–3305CrossRefGoogle Scholar
  69. 69.
    Deere J, Magner E, Wall JG, Hodnett BK (2002) J Phys Chem B 106:7340–7347CrossRefGoogle Scholar
  70. 70.
    Zhang L, Sun T, Ying JY (1999) Chem Commun 1103–1104Google Scholar
  71. 71.
    Sun J, Zhang, H, Tian R, Ma D, Bao X, Su D, S, Zou H (2006) Chem Commun 1322–1324Google Scholar
  72. 72.
    Wahab MA, Imae I, Kawakami Y, Ha C-H (2005) Chem Mater 17:2165–2174CrossRefGoogle Scholar
  73. 73.
    Hudson S, Cooney J, Hodnett BK, Magner E (2007) Chem Mater 19:2049–2055CrossRefGoogle Scholar
  74. 74.
    Zhang L, Sun T, Ying JY (1999) Chem Commun 1103–1104Google Scholar
  75. 75.
    He J, Li X, Evans DG, Duan X, Li C (2000) J Mol Catal B 11:45–53CrossRefGoogle Scholar
  76. 76.
    Wang P, Dai S, Waezsada SD, Tsao AY, Davison BH (2001) Biotechnol Bioeng 74:249–255CrossRefGoogle Scholar
  77. 77.
    Bai Y, Yang H, Yang W, Li Y, Sun C (2007) Sens Actuators B 124:179–186CrossRefGoogle Scholar
  78. 78.
    Zhu Y, Kaskel S, Shi J, Wage T, van Pée K (2007) Chem Mater 19:6408–6413CrossRefGoogle Scholar
  79. 79.
    Lee J, Kim J, Kim J, Jia H, Kim MI, Kwak JH, Jin S, Dohnalkova A, Park HG, Chang HN, Wang P, Grate JW, Hyeon T (2005) Small 1:744–753CrossRefGoogle Scholar
  80. 80.
    Chan WCW, Nie SM (1998) Science 281:2016–2021CrossRefGoogle Scholar
  81. 81.
    Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297:787–792CrossRefGoogle Scholar
  82. 82.
    Rubianes MD, Rivas GA (2003) Electrochem Commun 5:689–694CrossRefGoogle Scholar
  83. 83.
    Davis JJ, Coleman KS, Azamian BR, Bagshaw CB, Green MLH (2003) Chem Eur J 9:3732–3739CrossRefGoogle Scholar
  84. 84.
    Li YG, Zhou YX, Feng JL, Jiang ZH, Ma LR (1999) Anal Chim Acta 382:277–282CrossRefGoogle Scholar
  85. 85.
    Anderson JET, Olesen KG, Danilov AI, Foverskov CE, Moller P, Ulstrup J (1997) Bioelectrochem Bioenerg 44:57–63CrossRefGoogle Scholar
  86. 86.
    Rippeth JJ, Gibson TD, Hart JP, Hartley IC, Nelson G (1997) Analyst 122:1425–1429CrossRefGoogle Scholar
  87. 87.
    Palmisano F, De Benedetto GE, Zambonin CG (1997) Analyst 122:365–369CrossRefGoogle Scholar
  88. 88.
    Andreescu S, Barthelmebs L, Marty JL (2002) Anal Chim Acta 464:171–180CrossRefGoogle Scholar
  89. 89.
    Hench LL, West JK (1990) Chem Rev 90:33–79CrossRefGoogle Scholar
  90. 90.
    Dave BC, Dunn B, Valentine JS, Zink JI (1994) Anal Chem 66:1120A–1127ACrossRefGoogle Scholar
  91. 91.
    Avnir D, Braun S, Lev O, Ottolenghi M (1994) Chem Mater 6:1605–1614CrossRefGoogle Scholar
  92. 92.
    Oda I, Hirata K, Watanabe S, Shibata Y, Kajino T, Fukushima Y, Iwai S, Itoh S (2006) J Phys Chem B 110:1114–1120CrossRefGoogle Scholar
  93. 93.
    Dai Z, Ju H, Chen H (2005) Electroanalysis 17:862–868CrossRefGoogle Scholar
  94. 94.
    Xian Y, Xian Y, Zhou L, Wu F, Ling Y, Jin L (2007) Electrochem Commun 9:142–148CrossRefGoogle Scholar
  95. 95.
    Dai Z, Liu S, Ju H, Chen H (2004) Biosens Bioelectron 19:861–867CrossRefGoogle Scholar
  96. 96.
    Dai Z, Xu X, Ju H (2004) Anal Biochem 332:23–31CrossRefGoogle Scholar
  97. 97.
    Wu S, Ju H, Liu Y (2007) Adv Funct Mater 17:585–892CrossRefGoogle Scholar
  98. 98.
    Vamvakaki V, Chaniotakis NA (2007) Biosens Bioelectron 22:2650–2655CrossRefGoogle Scholar
  99. 99.
    Dai Z, Xu X, Wu L, Ju H (2005) Electroanalysis 17:1571–1577CrossRefGoogle Scholar
  100. 100.
    Dai Z, Xu X, Wu L, Ju H (2005) Electroanalysis 17:1571CrossRefGoogle Scholar
  101. 101.
    Lei C, Valenta MM, Saripalli KP, Ackerman EJ (2007) J Environ Qual 36:233–238CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Cristina Ispas
    • 1
  • Igor Sokolov
    • 2
  • Silvana Andreescu
    • 1
  1. 1.Department of Chemistry and Biomolecular ScienceClarkson UniversityPotsdamUSA
  2. 2.Department of PhysicsClarkson UniversityPotsdamUSA

Personalised recommendations