Advertisement

Analytical and Bioanalytical Chemistry

, Volume 391, Issue 8, pp 2905–2914 | Cite as

Development of a selective molecularly imprinted polymer-based solid-phase extraction for indomethacin from water samples

  • Tao Yang
  • Ya-Hui Li
  • Shuang Wei
  • Yuan Li
  • Anping DengEmail author
Original Paper

Abstract

A selective molecularly imprinted solid-phase extraction (MISPE) for indomethacin (IDM) from water samples was developed. Using IDM as template molecule, acrylamide (AM) or methacrylic acid (MAA) as functional monomer, ethylene dimethacrylate (EDMA) as crosslinker, and bulk or suspension polymerization as the synthetic method, three molecularly imprinted polymers (MIPs) were synthesized and characterized with a rebinding experiment. It was found that the MIP of AM-EDMA produced by bulk polymerization showed the highest binding capacity for IDM, and so it was chosen for subsequent experiments, such as those testing the selectivity and recognition binding sites. Scatchard analysis revealed that at least two kinds of binding sites formed in the MIP, with the dissociation constants of 7.8 μmol L−1 and 127.2 μmol L−1, respectively. Besides IDM, three structurally related compounds — acemetacin, oxaprozin and ibuprofen — were employed for selectivity tests. It was observed that the MIP exhibited the highest selective rebinding to IDM. Accordingly, the MIP was used as a solid-phase extraction sorbent for the extraction and enrichment of IDM in water samples. The extraction conditions of the MISPE column for IDM were optimized to be: chloroform or water as loading solvent, chloroform with 20% acetonitrile as washing solution, and methanol as eluting solvent. Water samples with or without spiking were extracted by the MISPE column and analyzed by HPLC. No detectable IDM was observed in tap water and the content of IDM in a river water sample was found to be 1.8 ng mL−1. The extraction efficiencies of the MISPE column for IDM in spiked tap and river water were acceptable (87.2% and 83.5%, respectively), demonstrating the feasibility of the prepared MIP for IDM extraction.

Figure

Molecularly imprinted polymer-based solid-phase extraction for indomethacin

Keywords

Molecularly imprinted polymer (MIP) Indomethacin (IDM) Solid-phase extraction (SPE) Water sample 

Notes

Acknowledgements

The authors thank the National Natural Science Foundation of China (NSFC, contact No. 20675054) and the Promotion Program Foundation of Sichuan University of China (No. 0082204127090) for financial support of this study. We also thank Prof. Qing-de Su, Dr. Jun Yang, and Dr. Zhong-lan Shen (University of Science and Technology of China) for their technical assistance.

References

  1. 1.
    Fent K, Weston AA, Caminada D (2006) Aquat Toxicol 76:122–159CrossRefGoogle Scholar
  2. 2.
    Krishna R, Riggs KW, Walker MPR, Kwan E, Rurak DW (1995) J Chromatogr B 674:65CrossRefGoogle Scholar
  3. 3.
    Guissou P, Cuisinaud G, Sassard J (1983) J Chromatogr B 277:368CrossRefGoogle Scholar
  4. 4.
    Cristòfol C, Pérez B, Pons M, Valladares JE, Martí G, Arboix M (1998) J Chromatogr B 709:310CrossRefGoogle Scholar
  5. 5.
    Sato J, Amizuka T, Niida Y, Umetsu M, Ito K (1997) J Chromatogr B 692:241CrossRefGoogle Scholar
  6. 6.
    Palmgrén JJ, Mönkkönen J, Korjamo T, Hassinen A, Auriola S (2006) Eur J Pharm Biopharm 64:369CrossRefGoogle Scholar
  7. 7.
    Donato MG, Baeyens W, Bossche WVD, Sandra P (1994) J Pharm Biomed Anal 12:21CrossRefGoogle Scholar
  8. 8.
    Donato MG, Eeckhout EVD, Bossche WVD, Sandra P (1993) J Pharm Biomed Anal 11:197CrossRefGoogle Scholar
  9. 9.
    Jiang M, Zhang J, Mei S, Shi Y, Zou L, Zhu Y, Dai K, Lu B (2006) J Chromatogr A 1110:27CrossRefGoogle Scholar
  10. 10.
    Shi X, Wu A, Zheng S, Li R, Zhang D (2007) J Chromatogr B 850:24CrossRefGoogle Scholar
  11. 11.
    Baggiani C, Baravalle P, Giraudi G, Tozzi C (2007) J Chromatogr A 1141:158CrossRefGoogle Scholar
  12. 12.
    Zhu Q, Degelmann P, Niessner R, Knopp D (2002) Environ Sci Technol 36:5411CrossRefGoogle Scholar
  13. 13.
    Hosoya K, Shirasu Y, Kimata K, Tanaka N (1998) Anal Chem 70:943CrossRefGoogle Scholar
  14. 14.
    Yan S, Gao Z, Fang Y, Cheng Y, Zhou H, Wang H (2007) Dyes Pigments 74:572CrossRefGoogle Scholar
  15. 15.
    Puoci F, Cirillo G, Curcio M, Iemma F, Spizzirri UG, Picci N (2007) Anal Chim Acta 593:164CrossRefGoogle Scholar
  16. 16.
    Meng Z, Chen W (2005) Environ Sci Technol 39:8958CrossRefGoogle Scholar
  17. 17.
    Lai J, He X, Chen F (2003) Anal Bioanal Chem 377:208CrossRefGoogle Scholar
  18. 18.
    Shi Y, Zhang J, Shi D, Jiang M, Zhu Y, Mei S, Zhou Y, Dai K, Lu B (2006) J Pharm Biomed Anal 42:549CrossRefGoogle Scholar
  19. 19.
    Siemann M, Andersson LI, Mosbach K (1996) J Agric Food Chem 44:141CrossRefGoogle Scholar
  20. 20.
    Dżygiel P, Donnell EO’, Fraier D, Chassaing C, Cormack PAG (2007) J Chromatogr B 853:346CrossRefGoogle Scholar
  21. 21.
    Lai J, Niessner R, Knopp D (2004) Anal Chim Acta 522:137CrossRefGoogle Scholar
  22. 22.
    Farrington K, Regan F (2007) Biosens Bioelectron 22:1138CrossRefGoogle Scholar
  23. 23.
    Lai J, Lu C, He W (2003) Chem J Chin Univ 24:1175Google Scholar
  24. 24.
    Nie F, Lu J, He Y, Du J (2005) Talanta 66:728CrossRefGoogle Scholar
  25. 25.
    Huo S, Yang H, Deng A (2007) Talanta 73:380CrossRefGoogle Scholar
  26. 26.
    Zhu Q, Haupt K, Knopp D, Niessner R (2002) Anal Chim Acta 468:217CrossRefGoogle Scholar
  27. 27.
    He J, Zhu Q, Deng Q (2007) Spectro Chim Acta Part A 67:1297CrossRefGoogle Scholar
  28. 28.
    Hu S, Li L, He X (2005) Anal Chim Acta 537:215CrossRefGoogle Scholar
  29. 29.
    Strikovsky A, Hradil J, Wulff G (2003) React Funct Polymers 54:49CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Tao Yang
    • 1
  • Ya-Hui Li
    • 1
  • Shuang Wei
    • 1
  • Yuan Li
    • 1
  • Anping Deng
    • 1
    Email author
  1. 1.College of ChemistrySichuan UniversityChengduChina

Personalised recommendations