Analytical and Bioanalytical Chemistry

, Volume 392, Issue 3, pp 355–367 | Cite as

New trends in bioanalytical tools for the detection of genetically modified organisms: an update

  • Elisa Michelini
  • Patrizia Simoni
  • Luca Cevenini
  • Laura Mezzanotte
  • Aldo Roda


Despite the controversies surrounding genetically modified organisms (GMOs), the production of GM crops is increasing, especially in developing countries. Thanks to new technologies involving genetic engineering and unprecedented access to genomic resources, the next decade will certainly see exponential growth in GMO production. Indeed, EU regulations based on the precautionary principle require any food containing more than 0.9% GM content to be labeled as such. The implementation of these regulations necessitates sampling protocols, the availability of certified reference materials and analytical methodologies that allow the accurate determination of the content of GMOs. In order to qualify for the validation process, a method should fulfil some criteria, defined as “acceptance criteria” by the European Network of GMO Laboratories (ENGL). Several methods have recently been developed for GMO detection and quantitation, mostly based on polymerase chain reaction (PCR) technology. PCR (including its different formats, e.g., double competitive PCR and real-time PCR) remains the technique of choice, thanks to its ability to detect even small amounts of transgenes in raw materials and processed foods. Other approaches relying on DNA detection are based on quartz crystal microbalance piezoelectric biosensors, dry reagent dipstick-type sensors and surface plasmon resonance sensors. The application of visible/near-infrared (vis/NIR) spectroscopy or mass spectrometry combined with chemometrics techniques has also been envisaged as a powerful GMO detection tool. Furthermore, in order to cope with the multiplicity of GMOs released onto the market, the new challenge is the development of routine detection systems for the simultaneous detection of numerous GMOs, including unknown GMOs.


Genetically modified organism detection PCR technology Biosensors Multiplexing Sampling Reference materials 


  1. 1.
    Dlugosch KM, Whitton J (2008) Mol Ecol 17:1167–1169CrossRefGoogle Scholar
  2. 2.
    Kleter GA, Prandini A, Filippi L, Marvin HJ (2008) Food Chem Toxicol DOI 10.1016/j.fct.2007.12.022
  3. 3.
    McHughen A, Smyth S (2008) Plant Biotechnol J 6:2–12Google Scholar
  4. 4.
    Rodríguez-Lázaro D, Lombard B, Smith H, Rzezutka A, D’Agostino M, Helmuth R, Schroeter A, Malorny B, Miko A, Guerra B, Davison J, Kobilinsky A, Hernández M, Bertheau Y, Cook N (2007) Trends Food Sci Tech 18:306–319CrossRefGoogle Scholar
  5. 5.
    Holst-Jensen A, Rønning SB, Løvseth A, Berdal KG (2003) Anal Bioanal Chem 375:985–993Google Scholar
  6. 6.
    Ahmed FE (2002) Trends Biotechnol 20:215–223CrossRefGoogle Scholar
  7. 7.
    Elenis DS, Kalogianni DP, Glynou K, Ioannou PC, Christopoulos TK (2008) Anal Bioanal Chem DOI 10.1007/s00216-008-1868-4
  8. 8.
    Moreano F, Busch U, Engel KH (2005) J Agric Food Chem 53:9971–9979CrossRefGoogle Scholar
  9. 9.
    Engel KH, Moreano F, Ehlert A, Busch U (2006) Trends Food Sci Tech 17:490–497CrossRefGoogle Scholar
  10. 10.
    Rexroad CE Jr, Green RD, Wall RJ (2007) Theriogenol 68:S3–S8CrossRefGoogle Scholar
  11. 11.
    Wheeler MB (2007) Trends Biotechnol 25:204–210CrossRefGoogle Scholar
  12. 12.
    Devlin RH, Sundström LF, Muir WM (2006) Trends Biotechnol 24:89–97CrossRefGoogle Scholar
  13. 13.
    Miller HI (2008) Nat Biotechnol 26:159–160CrossRefGoogle Scholar
  14. 14.
    Frey J (2007) Vaccine 25:5598–5605CrossRefGoogle Scholar
  15. 15.
    Whitaker TB, Trucksess MW, Giesbrecht FG, Slate AB, Thomas FS (2004) J AOAC Int 87:950–960Google Scholar
  16. 16.
    Whitaker TB, Freese L, Giesbrecht FG, Slate AB (2001) J AOAC Int 84:1941–1946Google Scholar
  17. 17.
    Emslie KR, Whaites L, Griffiths KR, Murby EJ (2007) J Agric Food Chem 55:4414–4421CrossRefGoogle Scholar
  18. 18.
    Loftus R (2005) Rev Sci Tech 24:231–242Google Scholar
  19. 19.
    Miraglia M, Berdal KG, Brera C, Corbisier P, Holst-Jensen A, Kok EJ, Marvin HJ, Schimmel H, Rentsch J, van Rie JP, Zagon J (2004) Food Chem Toxicol 42:1157–1180CrossRefGoogle Scholar
  20. 20.
    Garcia-Cañas V, Cifuentes A, Gonzàlez R (2004) Anal Chem 76:2306–2313CrossRefGoogle Scholar
  21. 21.
    Sánchez L, González R, Crego AL, Cifuentes A (2007) J Sep Sci 30:579–585CrossRefGoogle Scholar
  22. 22.
    Buh Gasparic M, Cankar K, Zel J, Gruden K (2008) BMC Biotechnol 8:26CrossRefGoogle Scholar
  23. 23.
    Mavropoulou AK, Koraki T, Ioannou PC, Christopoulos TK (2005) Anal Chem 77:4785–4791CrossRefGoogle Scholar
  24. 24.
    Kalogianni DP, Elenis DS, Christopoulos TK, Ioannou PC (2007) Anal Chem 79:6655–6661CrossRefGoogle Scholar
  25. 25.
    Zhang M, Gao X, Yu Y, Ao J, Qin J, Yao Y, Li Q (2007) Food Control 18:1277–1281CrossRefGoogle Scholar
  26. 26.
    Cankar K, Štebih D, Dreo T, Žel J, Gruden K (2006) BMC Biotechnol 6:37CrossRefGoogle Scholar
  27. 27.
    Manera MG, Spadavecchia J, Leone A, Quaranta F, Rella R, Dell’Atti D, Minunni M, Mascini M, Siciliano P (2007) Sens Actuators B DOI 10.1016/j.snb.2007.02.060
  28. 28.
    Feriotto G, Borgatti M, Mischiati C, Bianchi N, Gambari R (2002) J Agric Food Chem 50:955–962CrossRefGoogle Scholar
  29. 29.
    Gambari R, Feriotto G (2006) J AOAC Int 89:893–897Google Scholar
  30. 30.
    Kalogianni DP, Koraki T, Christopoulos TK, Ioannou PC (2006) Sens Actuators B 21:1069–1076Google Scholar
  31. 31.
    Passamano M, Pighini M (2006) Sens Actuators B 118:177–181Google Scholar
  32. 32.
    Mannelli I, Minunni M, Tombelli S, Mascini M (2003) Biosens Bioelectron 18:129–140CrossRefGoogle Scholar
  33. 33.
    Lucarelli F, Marrazza G, Mascini M (2005) Biosens Bioelectron 20:2001–2009CrossRefGoogle Scholar
  34. 34.
    Sun W, Zhong J, Zhang B, Jiao K (2007) Anal Bioanal Chem 389:2179–2184CrossRefGoogle Scholar
  35. 35.
    Grothaus GD, Bandla M, Currier T, Giroux R, Jenkins GR, Lipp M, Shan G, Stave JW, Pantella V (2006) J AOAC Int 89:913–928Google Scholar
  36. 36.
    Fantozzi A, Ermolli M, Marini M, Scotti D, Balla B, Querci M, Langrell SR, Van den Eede G (2007) J Agric Food Chem 55:1071–1076CrossRefGoogle Scholar
  37. 37.
    Roda A, Mirasoli M, Guardigli M, Michelini E, Simoni P, Magliulo M (2006) Anal Bioanal Chem 384:1269–1275CrossRefGoogle Scholar
  38. 38.
    Paul V, Steinke K, Meyer HH (2008) Anal Chim Acta 607:106–113CrossRefGoogle Scholar
  39. 39.
    Shim YY, Shin WS, Moon GS, Kim KH (2007) J Microbiol Biotechnol 17:681–684Google Scholar
  40. 40.
    Onishi M, Matsuoka T, Kodama T, Kashiwaba K, Futo S, Akiyama H, Maitani T, Furui S, Oguchi T, Hino A (2005) J Agric Food Chem 53:9713–9721CrossRefGoogle Scholar
  41. 41.
    Xu J, Zhu S, Miao H, Huang W, Qiu M, Huang Y, Fu X, Li Y (2007) J Agric Food Chem 55:5575–5579CrossRefGoogle Scholar
  42. 42.
    Hernández M, Rodríguez-Lázaro D, Zhang D, Esteve T, Pla M, Prat S (2005) J Agric Food Chem 53:3333–3337CrossRefGoogle Scholar
  43. 43.
    Nadal A, Coll A, La Paz JL, Esteve T, Pla M (2006) Electrophoresis 27:3879–3888CrossRefGoogle Scholar
  44. 44.
    Hernández M, Rodríguez-Lázaro D, Zhang D, Esteve T, Pla M, Prat S (2005) J Agric Food Chem 53:3333–3337CrossRefGoogle Scholar
  45. 45.
    Pan L, Zhang S, Yang L, Broll H, Tian F, Zhang D (2007) J AOAC 90:1639–1646Google Scholar
  46. 46.
    Zhang D, Corlet A, Fouilloux S (2007) Transgenic Res DOI 10.1007/s11248-007-9114-y
  47. 47.
    Singh CK, Ojha A, Bhatanagar RK, Kachru DN (2008) Anal Bioanal Chem 390:377–387CrossRefGoogle Scholar
  48. 48.
    Leimanis S, Hernández M, Fernández S, Boyer F, Burns M, Bruderer S, Glouden T, Harris N, Kaeppeli O, Philipp P, Pla M, Puigdomènech P, Vaitilingom M, Bertheau Y, Remacle J (2006) Plant Mol Biol 61:123–139CrossRefGoogle Scholar
  49. 49.
    Rønning SB, Berdal KG, Andersen CB, Holst-Jensen A (2006) J Agric Food Chem 54:682–687CrossRefGoogle Scholar
  50. 50.
    Toyota A, Akiyama H, Sugimura M, Watanabe T, Kikuchi H, Kanamori H, Hino A, Esaka M, Maitani T (2006) Biosci Biotechnol Biochem 70:821–827CrossRefGoogle Scholar
  51. 51.
    Charels D, Broeders S, Corbisier P, Trapmann S, Schimmel H, Emons H (2007) J Agric Food Chem 55:3268–3274CrossRefGoogle Scholar
  52. 52.
    Chaouachi M, El Malki R, Berard A, Romaniuk M, Laval V, Brunel D, Bertheau Y (2008) J Agric Food Chem DOI 10.1021/jf073313n
  53. 53.
    Clapp J (2008) Ecol Econ DOI 10.1016/j.ecolecon.2007.09.006
  54. 54.
    Nesvold H, Kristoffersen AB, Holst-Jensen A, Berdal KG (2005) Bioinformatics 21:1917–1926CrossRefGoogle Scholar
  55. 55.
    Tengs T, Kristoffersen AB, Berdal KG, Thorstensen T, Butenko MA, Nesvold H, Holst-Jensen A (2007) BMC Biotechnol 7:91CrossRefGoogle Scholar
  56. 56.
    Akiyama H, Sasaki N, Sakata K, Ohmori K, Toyota A, Kikuchi Y, Watanabe T, Furui S, Kitta K, Maitani T (2007) J Agric Food Chem 55:5942–5947CrossRefGoogle Scholar
  57. 57.
    Akiyama H, Sakata K, Kondo K, Tanaka A, Liu MS, Oguchi T, Furui S, Kitta K, Hino A, Teshima R (2008) J Agric Food Chem DOI 10.1021/jf0727239
  58. 58.
    Deisingh AK, Badrie N (2005) Food Res Int 38:639–649CrossRefGoogle Scholar
  59. 59.
    Kumar KS, Kang SH (2007) Electrophoresis 28:4247–4254CrossRefGoogle Scholar
  60. 60.
    Chen J, Arnold MA, Small GW (2004) Anal Chem 76:5405–5413CrossRefGoogle Scholar
  61. 61.
    Trygg J, Holmes E, Lundstedt T (2007) J Proteome Res 6:469–479CrossRefGoogle Scholar
  62. 62.
    Roussel SA, Hardy CL, Hurburgh CR, Rippke GR (2001) Appl Spectrosc 55:1425–1430CrossRefGoogle Scholar
  63. 63.
    Xie L, Ying Y, Ying T (2007) J Agric Food Chem 55:4645–4650CrossRefGoogle Scholar
  64. 64.
    Rodríguez-Nogales JM, Cifuentes A, García MC, Marina ML (2007) J Agric Food Chem 55:3835–3842CrossRefGoogle Scholar
  65. 65.
    Jastrzebska A, Brudka B, Szymanski T, Szlyk E (2003) Food Chem 83:463–467CrossRefGoogle Scholar
  66. 66.
    Holmes E, Tang H, Wang Y, Seger C (2006) Planta Med 72:771–785CrossRefGoogle Scholar
  67. 67.
    Idle JR, Gonzalez FJ (2007) Cell Metab 6:348–351CrossRefGoogle Scholar
  68. 68.
    Careri M, Elviri L, Mangia A, Zagnoni I, Agrimonti C, Visioli G, Marmiroli N (2003) Rapid Commun Mass Spectrom 17:479–483CrossRefGoogle Scholar
  69. 69.
    Ocaña MF, Fraser PD, Patel RK, Halket JM, Bramley PM (2007) Rapid Commun Mass Spectrom 21:319–328CrossRefGoogle Scholar
  70. 70.
    García-Cañas V, González R, Cifuentes A (2004) Electrophoresis 25:2219–26Google Scholar
  71. 71.
    Obeid PJ, Christopoulos TK, Ioannou PC (2004) Electrophoresis 25:922–30Google Scholar
  72. 72.
    Glynou K, Ioannou PC, Christopoulos TK (2004) Anal Bioanal Chem 378:1748–53Google Scholar
  73. 73.
    Xu J, Miao H, Wu H, Huang W, Tang R, Qiu M, Wen J, Zhu S, Li Y (2006) Biosens Bioelectron 22:71–7Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Elisa Michelini
    • 1
  • Patrizia Simoni
    • 2
  • Luca Cevenini
    • 1
  • Laura Mezzanotte
    • 1
  • Aldo Roda
    • 1
  1. 1.Department of Pharmaceutical SciencesUniversity of BolognaBolognaItaly
  2. 2.Department of Internal Medicine and GastroenterologyUniversity of BolognaBolognaItaly

Personalised recommendations