Determination of compound-specific Hg isotope ratios from transient signals using gas chromatography coupled to multicollector inductively coupled plasma mass spectrometry (MC-ICP/MS)

  • Mark DzurkoEmail author
  • Delphine Foucher
  • Holger Hintelmann
Original Paper


MeHg and inorganic Hg compounds were measured in aqueous media for isotope ratio analysis using aqueous phase derivatization, followed by purge-and-trap preconcentration. Compound-specific isotope ratio measurements were performed by gas chromatography interfaced to MC-ICP/MS. Several methods of calculating isotope ratios were evaluated for their precision and accuracy and compared with conventional continuous flow cold vapor measurements. An apparent fractionation of Hg isotopes was observed during the GC elution process for all isotope pairs, which necessitated integration of signals prior to the isotope ratio calculation. A newly developed average peak ratio method yielded the most accurate isotope ratio in relation to values obtained by a continuous flow technique and the best reproducibility. Compound-specific isotope ratios obtained after GC separation were statistically not different from ratios measured by continuous flow cold vapor measurements. Typical external uncertainties were 0.16‰ RSD (n = 8) for the 202Hg/198Hg ratio of MeHg and 0.18‰ RSD for the same ratio in inorganic Hg using the optimized operating conditions. Using a newly developed reference standard addition method, the isotopic composition of inorganic Hg and MeHg synthesized from this inorganic Hg was measured in the same run, obtaining a value of δ 202Hg = −1.49 ± 0.47 (2SD; n = 10). For optimum performance a minimum mass of 2 ng per Hg species should be introduced onto the column.


Multicollector inductively coupled plasma mass spectrometry Mercury Methylmercury Isotope ratios Transient signals Speciation Gas chromatography Mass bias Isotope fractionation 



We thank Brian Dimock, Dominic Larivière, Joy Zhu, Jeff Small, Qianli Xie, and Olivier Clarisse for many helpful discussions. We also thank the anonymous reviewers for helpful insight and suggested revisions. This work was funded by an NSERC COMERN (Natural Sciences and Engineering Research Council Collaborative Mercury Research Network) grant to HH.


  1. 1.
    Johnson TM, Herbel MJ, Bullen TD, Zawislanski PT (1999) Geochim Cosmochim Acta 63(18):2775–2783CrossRefGoogle Scholar
  2. 2.
    Rouxel O, Ludden J, Fouquet Y (2003) Chem Geol 200(1):25–40CrossRefGoogle Scholar
  3. 3.
    Klaue B, Kesler SE, Blum JD (2000) Investigation of natural fractionation of stable mercury isotopes by multi-collector ICP MS. In: Nriagu J (ed) 11th annual international conference on heavy metals in the environment. Ann ArborGoogle Scholar
  4. 4.
    Zheng W, Foucher D, Hintelmann H (2007) J Anal At Spectrom 22:1097–1104CrossRefGoogle Scholar
  5. 5.
    Lauretta DS, Klaue B, Blum JD, Busek PR (2001) Geochim Cosmochim Acta 65(16):2807–2818CrossRefGoogle Scholar
  6. 6.
    Evans RD, Hintelmann H, Dillon PJ (2001) J Anal At Spectrom 16:1064–1069CrossRefGoogle Scholar
  7. 7.
    Hintelmann H, Lu S (2003) Analyst 128:635–639CrossRefGoogle Scholar
  8. 8.
    Jackson TA, Muir D, Vincent WF (2004) Environ Sci Technol 38:2813–2821CrossRefGoogle Scholar
  9. 9.
    Foucher D, Hintelmann H (2006) Anal Bioanal Chem 384:1470–1478CrossRefGoogle Scholar
  10. 10.
    Xie Q, Lu S, Evans D, Dillon P, Hintelmann H (2005) J Anal At Spectrom 20:515–522CrossRefGoogle Scholar
  11. 11.
    Kritee K, Blum JD, Johnson MW, Bergquist BA, Barkay T (2007) Environ Sci Technol 41(6):1889–1895CrossRefGoogle Scholar
  12. 12.
    Krupp E, Pecheyran C, Meffan-Main S, Donard OFX (2004) Anal Bioanal Chem 378:250–255CrossRefGoogle Scholar
  13. 13.
    Wehmeier S, Ellam R, Feldmann J (2003) J Anal At Spectrom 18:1001–1007CrossRefGoogle Scholar
  14. 14.
    Krupp E, Donard OFX (2005) Int J Mass Spec 242:233–242CrossRefGoogle Scholar
  15. 15.
    Krupp E, Pecheyran C, Meffan-Main S, Donard OFX (2001) Fresenius J Anal Chem 370:573–580CrossRefGoogle Scholar
  16. 16.
    Clough R, Belt ST, Evans EH, Fairman B, Catterick T (2003) J Anal At Spectrom 18:1039–1046CrossRefGoogle Scholar
  17. 17.
    Gunther-Leopold I, Wernli B, Kopajtic Z, Gunther D (2004) Anal Bioanal Chem 378:241–249CrossRefGoogle Scholar
  18. 18.
    Hintelmann H, Ogrinc N (2003) ACS Symp Ser 835:321–338Google Scholar
  19. 19.
    Bloom NS (1989) Can J Fish Aquat Sci 46:1131–1138CrossRefGoogle Scholar
  20. 20.
    Horvat M, Bloom NS, Laing L (1993a) Anal Chim Acta 282:135–152CrossRefGoogle Scholar
  21. 21.
    Horvat M, Bloom NS, Laing L (1993b) Anal Chim Acta 282:153–168CrossRefGoogle Scholar
  22. 22.
    Anbar AD, Roe JE, Barling J, Nealson KH (2000) Science 288:126–128CrossRefGoogle Scholar
  23. 23.
    Hirata T, Hayano Y, Ohno T (2003) J Anal At Spectrom 18:1283–1288CrossRefGoogle Scholar
  24. 24.
    Encinar JR, Garcia Alonso JI, Sanz-Medel A, Main S, Turner PJ (2001) J Anal At Spectrom 16:315–321CrossRefGoogle Scholar
  25. 25.
    Yang L, Mester Z, Sturgeon RE (2003) J Anal At Spectrom 18:1365–1370CrossRefGoogle Scholar
  26. 26.
    Inagaki K, Takatsu A, Watanabe T, Aoyagi Y, Okamoto K (2003) Analyst 128:265–272CrossRefGoogle Scholar
  27. 27.
    Epov VN, Rodriguez-Gonzalez P, Sonke J, Tessier E, Amouroux D, Maurice Bourgoin L, Estrade N, Carignan J, Donard OFX (2007) Geochim Cosmochim Acta 71:A258Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Mark Dzurko
    • 1
    Email author
  • Delphine Foucher
    • 1
  • Holger Hintelmann
    • 1
  1. 1.Trent UniversityPeterboroughCanada

Personalised recommendations