Analytical and Bioanalytical Chemistry

, Volume 391, Issue 5, pp 1793–1800 | Cite as

Biosensor-based on-site explosives detection using aptamers as recognition elements

  • Eva Ehrentreich-Förster
  • Dagmar Orgel
  • Andrea Krause-Griep
  • Birgit Cech
  • Volker A. Erdmann
  • Frank Bier
  • F. W. Scheller
  • Martina Rimmele
Original Paper


Reliable observation, detection and characterisation of polluted soil are of major concern in regions with military activities in order to prepare efficient decontamination. Flexible on-site analysis may be facilitated by biosensor devices. With use of fibre-optic evanescent field techniques, it has been shown that immunoaffinity reactions can be used to determine explosives sensitively. Besides antibodies as molecular recognition elements, high-affinity nucleic acids (aptamers) can be employed. Aptamers are synthetically generated and highly efficient binding molecules that can be derived for any ligand, including small organic molecules like drugs, explosives or derivatives thereof. In this paper we describe the development of specific aptamers detecting the explosives molecule TNT. The aptamers are used as a sensitive capture molecule in a fibre-optic biosensor. In addition, through the biosensor measurements the aptamers could be characterised. The advantages of the aptamer biosensor include its robustness, its ability to discriminate between different explosives molecules while being insensitive to other chemical entities in natural soil and its potential to be incorporated into a portable device. Results can be obtained within minutes. The measurement is equally useful for soil that has been contaminated for a long time and for urgent hazardous spills.


Aptamer TNT In-field measurement Biosensor 



We thank the German Bundesministerium für Bildung und Forschung (BMBF) and the Senate of Berlin for kindly supporting the project, Protekum GmbH for providing TNT in the beginning, as well as the Wehrwissenschaftliches Institut für Werks-, Explosiv- und Betriebsstoffe (WIWEB) for providing different analytical and soil samples.


  1. 1.
    Styles JA, Cross MF (1993) Cancer Lett 20(1):103–108CrossRefGoogle Scholar
  2. 2.
    Levine BS, Furedi EM, Gordon DE, Barkley JJ, Lish PM (1990) Fundam Appl Toxicol 15(2):373–380CrossRefGoogle Scholar
  3. 3.
    Banerjee HN, Verma M, Hou LH, Ashraf M, Dutta SK (1999) Yale J Biol Med 72(1):1Google Scholar
  4. 4.
    Hawari J, Halasz A, Beaudet S, Paquet L, Amoleman G, Thiboutot S (1999) Appl Environ Microbiol 65(7):2977–2986Google Scholar
  5. 5.
    Best EP, Zappi ME, Fredrickson HL, Sprecher SL, Larson SL, Ochman M (1997) Ann N Y Acad Sci 21(829):179–194CrossRefGoogle Scholar
  6. 6.
    Best EP, Sprecher SL, Larson SL, Fredrickson HL, Bader DF (1999) Chemosphere 38(14):3383–3396CrossRefGoogle Scholar
  7. 7.
    Naal Z, Park JH, Bernhard S, Shapleigh JP, Batt CA, Abruna HD (2002) Anal Chem 74(1):140–148CrossRefGoogle Scholar
  8. 8.
    Narang U, Anderson GP, Ligler FS, Burans J (1997) Biosens Bioelectron 12(9-10):937–945CrossRefGoogle Scholar
  9. 9.
    Pinnaduwage LA, Gehl A, Hedden DL, Muralidharan G, Thundat T, Lareau RT, Sulchek T, Manning L, Rogers B, Jones M, Adams JD (2003) Nature 425:474CrossRefGoogle Scholar
  10. 10.
    Pinnaduwage LA, Wig A, Hedden DL, Gehl A, Yi D, Thundat T, Lareau RT (2004) J Appl Phys 95:5871CrossRefGoogle Scholar
  11. 11.
    Sapsford KE, Charles PT, Patterson CH Jr, Ligler FS (2002) Anal Chem 74(5):1061–1068CrossRefGoogle Scholar
  12. 12.
    Goldman ER, Hayhurst A, Lingerfelt BM, Iverson BL, Georgiou G, Anderson GP (2003) J Environ Monit 5(3):380–383CrossRefGoogle Scholar
  13. 13.
    Shriver-Lake LC, Donner BL, Ligler FS (1997) Environ Sci Technol 31:837–841CrossRefGoogle Scholar
  14. 14.
    Shriver-Lake LC, Patterson CH, van Bergen SK (2000) Field Anal Chem Technol 4:239–245CrossRefGoogle Scholar
  15. 15.
    Singh S (2007) J Hazard Mater 144:15–28CrossRefGoogle Scholar
  16. 16.
    Rimmele M (2003) Chembiochem 4:963–971CrossRefGoogle Scholar
  17. 17.
    Menger M, Glökler J, Rimmele M (2006) RNA Towards Med 173:359–373CrossRefGoogle Scholar
  18. 18.
    Song S, Wang L, Li J, Zhao J, Fan C (2008) Trends Anal Chem 27(2):108–117CrossRefGoogle Scholar
  19. 19.
    Tuerk C, Gold L (1990) Science 249:505–510CrossRefGoogle Scholar
  20. 20.
    Ellington AD, Szostak J (1990) Nature 346:812–822CrossRefGoogle Scholar
  21. 21.
    Kleinjung F, Bier FF, Warsinke A, Scheller FW (1997) Anal Chim Acta 350:51–58CrossRefGoogle Scholar
  22. 22.
    Kleinjung F, Klussmann S, Erdmann VA, Scheller FW, Fürste JP, Bier FF (1998) Anal Chem 70:328–331CrossRefGoogle Scholar
  23. 23.
    Zeck A, Waller MG, Niessner R (1999) Fresenius J Anal Chem 364:51–63CrossRefGoogle Scholar
  24. 24.
    Klussmann S, Nolte A, Bald R, Erdmann VA, Fürste JP (1996) Nat Biotechnol 14:1112–1115CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Eva Ehrentreich-Förster
    • 2
  • Dagmar Orgel
    • 1
  • Andrea Krause-Griep
    • 2
  • Birgit Cech
    • 1
  • Volker A. Erdmann
    • 3
  • Frank Bier
    • 2
    • 4
  • F. W. Scheller
    • 4
  • Martina Rimmele
    • 1
  1. 1.RiNA Network RNA Technologies GmbHBerlinGermany
  2. 2.Fraunhofer Institute for Biomedical TechnologyPotsdamGermany
  3. 3.Institute for BiochemistryFree University of BerlinBerlinGermany
  4. 4.Institute for Biochemistry and BiologyUniversity of PotsdamPotsdam-GolmGermany

Personalised recommendations