Analytical and Bioanalytical Chemistry

, Volume 391, Issue 5, pp 1861–1869 | Cite as

Effect of the immobilisation of DNA aptamers on the detection of thrombin by means of surface plasmon resonance

  • Veronika Ostatná
  • Hana Vaisocherová
  • Jiří Homola
  • Tibor Hianik
Original Paper

Abstract

We report a multichannel surface plasmon resonance (SPR) sensor for detection of thrombin via DNA aptamers immobilized on the SPR sensor surface. A detailed investigation of the effect of the immobilisation method on the interaction between thrombin and DNA aptamers is presented. Three basic approaches to the immobilisation of aptamers on the surface of the SPR sensor are examined: (i) immobilisation based on chemisorption of aptamers modified with SH groups, (ii) immobilisation of biotin-tagged aptamers via previously immobilized avidin, neutravidin or streptavidin molecular linkers, and (iii) immobilisation employing dendrimers as a support layer for subsequent immobilisation of aptamers. A level of nonspecific binding of thrombin to immobilized human serum albumin (HSA) for each of the immobilisation methods is determined. Immobilisation of aptamers by means of the streptavidin–biotin system yields the best results both in terms of sensor specificity and sensitivity.

Keywords

DNA aptamer Thrombin Dendrimers Surface plasmon resonance 

References

  1. 1.
    Elington AD, Szostak JW (1990) Nature (London) 346:818–822CrossRefGoogle Scholar
  2. 2.
    James W (2000) In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 4848–4871Google Scholar
  3. 3.
    Scheller FW, Wollenberg U, Warsinke A, Lisdat F (2001) Curr Opin Biotechnol 12:36–40CrossRefGoogle Scholar
  4. 4.
    O’Sullivan CK (2002) Anal Bioanal Chem 372:44–48CrossRefGoogle Scholar
  5. 5.
    Sayer N, Ibrahim J, Turner K, Tahiri-Alaoui A, James W (2002) Biochem Biophys Res Comm 293:924–931CrossRefGoogle Scholar
  6. 6.
    Luzi E, Minunni M, Tombelli S, Mascini M (2005) Trends Anal Chem 22:810–818CrossRefGoogle Scholar
  7. 7.
    Tuerk C, Gold L (1990) Science 249:505–510CrossRefGoogle Scholar
  8. 8.
    Conrad R, Keranen LM, Ellington AD, Newton AC (1994) J Biol Chem 269:32051–32054Google Scholar
  9. 9.
    Dougan H, Hobbs JB, Weitz JI, Lyster DM (1997) Nucl Acid Res 25:2897–2901CrossRefGoogle Scholar
  10. 10.
    Osborne SE, Matsumura I, Elington AD (1997) Curr Opin Chem Biol 1:5–9CrossRefGoogle Scholar
  11. 11.
    McCauley GT, Hamaguchi N, Stanton M (2003) Anal Biochem 319:244–250CrossRefGoogle Scholar
  12. 12.
    Hianik T, Ostatná V, Zajacová Z, Stoikova E, Evtugyn G (2005) Bioorg Med Chem Lett 15:291–295CrossRefGoogle Scholar
  13. 13.
    Hianik T, Ostatná V, Sonlajtnerova M, Grman I (2007) Bioelectrochemistry 70:127–133CrossRefGoogle Scholar
  14. 14.
    Bang GS, Cho S, Kim B-G (2005) Biosens Bioelectron 21:863–870CrossRefGoogle Scholar
  15. 15.
    Xiao Y, Lubin AA, Heeger AJ, Plaxco KW (2005) Angew Chem Int Ed 44:5456–5459CrossRefGoogle Scholar
  16. 16.
    Xiao Y, Pores BD, Plaxco KW, Heeger AJ (2005) J Am Chem Soc 127:17990–17991CrossRefGoogle Scholar
  17. 17.
    So H-M, Won K, Kim YH, Kim B-K, Ryu BH, Na PS, Kim H, Lee J-O (2005) J Am Chem Soc 127:11906–11907CrossRefGoogle Scholar
  18. 18.
    Hansen JA, Wang J, Kawde A-N, Xiang Y, Gothelf KV, Collins G (2006) J Am Chem Soc 128:2228–2229CrossRefGoogle Scholar
  19. 19.
    Radi AE, Sanchez JLA, Baldrich E, O’Sullivan CK (2005) Anal Chem 77:6320–6323CrossRefGoogle Scholar
  20. 20.
    Rodriguez MC, Kawde A-N, Wang J (2005) Chem Commun 34:4267–4269CrossRefGoogle Scholar
  21. 21.
    Tassew N, Thompson M (2002) Anal Chem 74:5313–5320CrossRefGoogle Scholar
  22. 22.
    Liss M, Petersen B, Wolf H, Prohaska E (2002) Anal Chem 74:4488–4495CrossRefGoogle Scholar
  23. 23.
    Tombelli S, Minunni M, Luzi E, Mascini M (2005) Bioelectrochemistry 67:135–141CrossRefGoogle Scholar
  24. 24.
    Pavlov V, Xiao Y, Shlyahovsky B, Willner I (2004) J Am Chem Soc 126:11768–11769CrossRefGoogle Scholar
  25. 25.
    Liao W, Wei F, Liu D, Qian MX, Yuan G, Zhao XS (2006) Sens Actuat B 114:445–450CrossRefGoogle Scholar
  26. 26.
    Tasset MD, Kubik MF, Steiner W (1997) J Mol Biol 272:688–698CrossRefGoogle Scholar
  27. 27.
    Numnuam A, Chumbimuni-Torres KY, Xiang Y, Bash R, Thavarungkul P, Kanatharana P, Pretsch E, Wang J, Bakker E (2008) Anal Chem 80:707–712CrossRefGoogle Scholar
  28. 28.
    Hianik T (2007) In: Alegret S, Merkoci A (eds) Electrochemical sensor analysis. Elsevier, Amsterdam, pp 801–825Google Scholar
  29. 29.
    Willner I, Zayats M (2007) Angew Chem Int Ed 46:6408–6418CrossRefGoogle Scholar
  30. 30.
    Mairal T, Özalp VC, Sánchez PL, Mir M, Katakis I, OSullivan CK (2008) Anal Bioanal Chem 390:989–1007CrossRefGoogle Scholar
  31. 31.
    Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Nature (London) 355:564–566CrossRefGoogle Scholar
  32. 32.
    Homola J, Vaisocherová H, Dostálek J, Piliarik M (2005) Methods 37:26–36CrossRefGoogle Scholar
  33. 33.
    Wilchek M, Bayer E (1994) Br J Cancer 69:502–507Google Scholar
  34. 34.
    Svobodová L, Šnejdárková M, Tóth K, Gyurcsanyi RE, Hianik T (2004) Bioelectrochemistry 63:285–289CrossRefGoogle Scholar
  35. 35.
    Centi S, Tombelli S, Minunni M, Mascini M (2007) Anal Chem 79:1466–1473CrossRefGoogle Scholar
  36. 36.
    Pividori MI, Merkoci A, Alegret S (2000) Biosens Bioelectr 15:291–303CrossRefGoogle Scholar
  37. 37.
    Hianik T, Porfireva A, Grman I, Evtugyn G (2008) Protein Peptide Lett (in press)Google Scholar
  38. 38.
    Brett MA, Oliveira Brett AM (1993) Electrochemistry. Principles, methods and applications. Oxford Science, OxfordGoogle Scholar
  39. 39.
    Bini A, Minunni M, Tombelli S, Centi S, Mascini M (2007) Anal Chem 79:3016–3019CrossRefGoogle Scholar
  40. 40.
    Hamaguchi N, Ellington A, Stanton M (2001) Anal Biochem 294:126–131CrossRefGoogle Scholar
  41. 41.
    Xu Y, Yang L, Ye X, He P, Fang Y (2006) Electroanalysis 18:1449–1456CrossRefGoogle Scholar
  42. 42.
    Wang X, Zhou J, Yun W, Xiao S, Chang Z, He P, Fang Y (2007) Anal Chim Acta 598:242–248CrossRefGoogle Scholar
  43. 43.
    Šnejdárková M, Svobodová L, Polohová V, Hianik T (2008) Anal Bioanal Chem 390:1087–1094CrossRefGoogle Scholar
  44. 44.
    Porfirieva A, Evtugyn G, Hianik T (2007) Electroanalysis 19:1915–1920CrossRefGoogle Scholar
  45. 45.
    Rye PD, Nustad K (2001) Biotechniques 30:290–295Google Scholar
  46. 46.
    Berg W, Hillvarn B, Arwin H, Stenberg M, Lundstrom I (1979) Thromb Haemost 42:972–982Google Scholar
  47. 47.
    Seyrek E, Dubin PL, Tribet C, Gamble EA (2003) Biomacromolecules 4:273–282CrossRefGoogle Scholar
  48. 48.
    Hianik T, Poniková S, Bagelova J, Antalik M (2006) Bioorg Med Chem Lett 16:274–279CrossRefGoogle Scholar
  49. 49.
    Skladal P (2003) J Braz Chem Soc 14:491–502CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Veronika Ostatná
    • 1
  • Hana Vaisocherová
    • 2
  • Jiří Homola
    • 2
  • Tibor Hianik
    • 1
  1. 1.Department of Nuclear Physics and BiophysicsComenius UniversityBratislavaSlovak Republic
  2. 2.Institute of Photonics and ElectronicsAcademy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations