Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates
- 983 Downloads
- 77 Citations
Abstract
This study examines the feasibility of using tip-enhanced Raman spectroscopy (TERS) for label-free chemical characterization of nanostructures in biological systems. For this purpose, a well-defined model system consisting of calcium alginate fibers is studied. In a companion paper, calcium alginate fibers and their network structures were shown to be a good model for the extracellular polysaccharides of biofilms at the nanoscale. TERS analysis of biological macromolecules, such as alginates, is complicated by heterogeneity in their sequence, molecular weight, and conformations, their small Raman cross-section, and the large number of functional groups, which can chemically interact with the silver surface of the tip and cause significant band shifts. Due to these effects, Raman frequencies in TERS spectra of biopolymers do not necessarily resemble band positions in the normal Raman spectrum of the bulk material, as is the case for less complex samples (e.g., dye molecules) studied so far. Additionally, analyte decomposition due to laser heating can have a significant influence, and carbon contamination signals can sometimes even overwhelm the weak analyte signals. Based on the investigation of alginates, strategies for spectra correction, choice of appropriate reference samples, and data interpretation are presented. With this approach, characteristic frequency ranges and specific marker bands can be found for biological macromolecules that can be employed for their identification in complex environments.
TERS spectrum of a calcium alginate fiber bundle
Keywords
Alginate Biological samples Biofilm Tip-enhanced Raman spectroscopy (TERS) Atomic force microscopy (AFM)Notes
Acknowledgements
Financial support for our work from the Deutsche Forschungsgemeinschaft (to Thomas Schmid), the ETH Zürich, and the Gebert Rüf Stiftung (grant no. P-085/03) is greatly appreciated.
References
- 1.Martinsen A, Skjakbraek G, Smidsrod O (1989) Biotechnol Bioeng 33:79–89CrossRefGoogle Scholar
- 2.Chourpa I, Carpentier P, Maingault P, Dubois P (1999) Proc SPIE 3608:48–54CrossRefGoogle Scholar
- 3.Chourpa I, Carpentier P, Maingault P, Fetissoff F, Dubois P (2000) Proc SPIE 3918:166–173CrossRefGoogle Scholar
- 4.Tonnesen HH, Karlsen J (2002) Drug Dev Ind Pharm 28:621–630CrossRefGoogle Scholar
- 5.Windhues T, Borchard W (2003) Carbohydr Polym 52:47–52CrossRefGoogle Scholar
- 6.Rowley JA, Madlambayan G, Mooney DJ (1999) Biomaterials 20:45–53CrossRefGoogle Scholar
- 7.Smidsrod O, Skjakbraek G (1990) Trends Biotechnol 8:71–78CrossRefGoogle Scholar
- 8.Paul W, Sharma CP (2004) Trends Biomater Artif Organs 18:18–23Google Scholar
- 9.Tielen P, Strathmann M, Jaeger KE, Flemming HC, Wingender J (2005) Microbiol Res 160:165–176CrossRefGoogle Scholar
- 10.Strathmann M, Griebe T, Flemming HC (2000) Appl Microbiol Biot 54:231–237CrossRefGoogle Scholar
- 11.Wloka M, Rehage H, Flemming HC, Wingender J (2004) Colloid Polym Sci 282:1067–1076CrossRefGoogle Scholar
- 12.Schmid T, Burkhard J, Yeo BS, Zhang W, Zenobi R (2008) Anal Bioanal Chem. DOI 10.1007/s00216-008-2100-2
- 13.Stöckle RM, Suh YD, Deckert V, Zenobi R (2000) Chem Phys Lett 318:131–136CrossRefGoogle Scholar
- 14.Anderson MS (2000) Appl Phys Lett 76:3130–3132CrossRefGoogle Scholar
- 15.Hayazawa N, Yano T, Watanabe H, Inouye Y, Kawata S (2003) Chem Phys Lett 376:174–180CrossRefGoogle Scholar
- 16.Hartschuh A, Anderson N, Novotny L (2003) J Microsc-Oxford 210:234–240CrossRefGoogle Scholar
- 17.Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2005) J Raman Spectrosc 36:541–550CrossRefGoogle Scholar
- 18.Mehtani D, Lee N, Hartschuh RD, Kisliuk A, Foster MD, Sokolov AP, Maguire JF (2005) J Raman Spectrosc 36:1068–1075CrossRefGoogle Scholar
- 19.Hartschuh A, Sanchez EJ, Xie XS, Novotny L (2003) Phys Rev Lett 90:095503CrossRefGoogle Scholar
- 20.Hering K, Cialla D, Ackermann K, Dörfer T, Möller R, Schneidewind H, Mattheis R, Fritzsche W, Rösch P, Popp J (2008) Anal Bioanal Chem 390:113–124CrossRefGoogle Scholar
- 21.Schmid T, Yeo BS, Zhang W, Zenobi R (2007) Use of tip-enhanced vibrational spectroscopy for analytical applications in chemistry, biology, and materials science. In: Kawata S, Shalaev V (eds) Tip enhancement. Elsevier, AmsterdamGoogle Scholar
- 22.Anderson MS, Gaimari SD (2003) J Struct Biol 142:364–368CrossRefGoogle Scholar
- 23.Neugebauer U, Rosch P, Schmitt M, Popp J, Julien C, Rasmussen A, Budich C, Deckert V (2006) Chem Phys Chem 7:1428–1430Google Scholar
- 24.Neugebauer U, Schmid U, Baumann K, Ziebuhr W, Kozitskaya S, Deckert V, Schmitt M, Popp J (2007) Chem Phys Chem 8:124–137Google Scholar
- 25.Yeo BS, Mädler S, Schmid T, Zhang W, Zenobi R (2008) J Phys Chem C 112:4867–4873Google Scholar
- 26.Bailo E, Deckert V (2008) Angew Chem Int Edit 47:1658–1661CrossRefGoogle Scholar
- 27.Hayazawa N, Watanabe H, Saito Y, Kawata S (2006) J Chem Phys 125:Google Scholar
- 28.Vannier C, Yeo BS, Melanson J, Zenobi R (2006) Rev Sci Instrum 77:023104CrossRefGoogle Scholar
- 29.Yeo BS, Zhang W, Vannier C, Zenobi R (2006) Appl Spectrosc 60:1142–1147CrossRefGoogle Scholar
- 30.Yeo BS, Schmid T, Zhang W, Zenobi R (2007) Anal Bioanal Chem 387:2655–2662CrossRefGoogle Scholar
- 31.Cui X, Zhang W, Yeo BS, Zenobi R, Hafner C, Erni D (2007) Opt Express 15:8309–8316CrossRefGoogle Scholar
- 32.Zhang W, Cui XD, Yeo BS, Schmid T, Hafner C, Zenobi R (2007) Nano Lett 7:1401–1405CrossRefGoogle Scholar
- 33.Skjakbraek G, Murano E, Paoletti S (1989) Biotechnol Bioeng 33:90–94CrossRefGoogle Scholar
- 34.Kudelski A, Pettinger B (2000) Chem Phys Lett 321:356–362CrossRefGoogle Scholar
- 35.Yonezawa Y, Sato T, Ohno M, Hada H (1987) J Chem Soc Faraday T I 83:1559–1567CrossRefGoogle Scholar
- 36.McIntire TM, Brant DA (1997) Imaging carbohydrate polymers with noncontact mode atomic force microscopy. In: Townsend RR, Hotchkiss AT (eds) Techniques in glycobiology. Marcel Dekker, New YorkGoogle Scholar
- 37.Decho AW (1999) Carbohydr Res 315:330–333CrossRefGoogle Scholar
- 38.Sartori C, Finch DS, Ralph B, Gilding K (1997) Polymer 38:43–51CrossRefGoogle Scholar
- 39.Deacon GB, Phillips RJ (1980) Coord Chem Rev 33:227–250CrossRefGoogle Scholar
- 40.Yeo BS, Chen ZH, Sim WS (2003) Langmuir 19:2787–2794CrossRefGoogle Scholar
- 41.Adebajo MO, Frost RL, Kloprogge JT, Kokot S (2006) Spectrochim Acta A 64:448–453CrossRefGoogle Scholar
- 42.Ferrari AC, Robertson J (2001) Phys Rev B 64:075414CrossRefGoogle Scholar
- 43.Schenzel K, Fischer S (2001) Cellulose 8:49–57CrossRefGoogle Scholar
- 44.Ribeiro CC, Barrias CC, Barbosa MA (2004) Biomaterials 25:4363–4373CrossRefGoogle Scholar
