Analytical and Bioanalytical Chemistry

, Volume 391, Issue 5, pp 1907–1916 | Cite as

Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates

  • Thomas Schmid
  • Andreas Messmer
  • Boon-Siang Yeo
  • Weihua Zhang
  • Renato Zenobi
Original Paper

Abstract

This study examines the feasibility of using tip-enhanced Raman spectroscopy (TERS) for label-free chemical characterization of nanostructures in biological systems. For this purpose, a well-defined model system consisting of calcium alginate fibers is studied. In a companion paper, calcium alginate fibers and their network structures were shown to be a good model for the extracellular polysaccharides of biofilms at the nanoscale. TERS analysis of biological macromolecules, such as alginates, is complicated by heterogeneity in their sequence, molecular weight, and conformations, their small Raman cross-section, and the large number of functional groups, which can chemically interact with the silver surface of the tip and cause significant band shifts. Due to these effects, Raman frequencies in TERS spectra of biopolymers do not necessarily resemble band positions in the normal Raman spectrum of the bulk material, as is the case for less complex samples (e.g., dye molecules) studied so far. Additionally, analyte decomposition due to laser heating can have a significant influence, and carbon contamination signals can sometimes even overwhelm the weak analyte signals. Based on the investigation of alginates, strategies for spectra correction, choice of appropriate reference samples, and data interpretation are presented. With this approach, characteristic frequency ranges and specific marker bands can be found for biological macromolecules that can be employed for their identification in complex environments.

Figure

TERS spectrum of a calcium alginate fiber bundle

Keywords

Alginate Biological samples Biofilm Tip-enhanced Raman spectroscopy (TERS) Atomic force microscopy (AFM) 

References

  1. 1.
    Martinsen A, Skjakbraek G, Smidsrod O (1989) Biotechnol Bioeng 33:79–89CrossRefGoogle Scholar
  2. 2.
    Chourpa I, Carpentier P, Maingault P, Dubois P (1999) Proc SPIE 3608:48–54CrossRefGoogle Scholar
  3. 3.
    Chourpa I, Carpentier P, Maingault P, Fetissoff F, Dubois P (2000) Proc SPIE 3918:166–173CrossRefGoogle Scholar
  4. 4.
    Tonnesen HH, Karlsen J (2002) Drug Dev Ind Pharm 28:621–630CrossRefGoogle Scholar
  5. 5.
    Windhues T, Borchard W (2003) Carbohydr Polym 52:47–52CrossRefGoogle Scholar
  6. 6.
    Rowley JA, Madlambayan G, Mooney DJ (1999) Biomaterials 20:45–53CrossRefGoogle Scholar
  7. 7.
    Smidsrod O, Skjakbraek G (1990) Trends Biotechnol 8:71–78CrossRefGoogle Scholar
  8. 8.
    Paul W, Sharma CP (2004) Trends Biomater Artif Organs 18:18–23Google Scholar
  9. 9.
    Tielen P, Strathmann M, Jaeger KE, Flemming HC, Wingender J (2005) Microbiol Res 160:165–176CrossRefGoogle Scholar
  10. 10.
    Strathmann M, Griebe T, Flemming HC (2000) Appl Microbiol Biot 54:231–237CrossRefGoogle Scholar
  11. 11.
    Wloka M, Rehage H, Flemming HC, Wingender J (2004) Colloid Polym Sci 282:1067–1076CrossRefGoogle Scholar
  12. 12.
    Schmid T, Burkhard J, Yeo BS, Zhang W, Zenobi R (2008) Anal Bioanal Chem. DOI 10.1007/s00216-008-2100-2
  13. 13.
    Stöckle RM, Suh YD, Deckert V, Zenobi R (2000) Chem Phys Lett 318:131–136CrossRefGoogle Scholar
  14. 14.
    Anderson MS (2000) Appl Phys Lett 76:3130–3132CrossRefGoogle Scholar
  15. 15.
    Hayazawa N, Yano T, Watanabe H, Inouye Y, Kawata S (2003) Chem Phys Lett 376:174–180CrossRefGoogle Scholar
  16. 16.
    Hartschuh A, Anderson N, Novotny L (2003) J Microsc-Oxford 210:234–240CrossRefGoogle Scholar
  17. 17.
    Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2005) J Raman Spectrosc 36:541–550CrossRefGoogle Scholar
  18. 18.
    Mehtani D, Lee N, Hartschuh RD, Kisliuk A, Foster MD, Sokolov AP, Maguire JF (2005) J Raman Spectrosc 36:1068–1075CrossRefGoogle Scholar
  19. 19.
    Hartschuh A, Sanchez EJ, Xie XS, Novotny L (2003) Phys Rev Lett 90:095503CrossRefGoogle Scholar
  20. 20.
    Hering K, Cialla D, Ackermann K, Dörfer T, Möller R, Schneidewind H, Mattheis R, Fritzsche W, Rösch P, Popp J (2008) Anal Bioanal Chem 390:113–124CrossRefGoogle Scholar
  21. 21.
    Schmid T, Yeo BS, Zhang W, Zenobi R (2007) Use of tip-enhanced vibrational spectroscopy for analytical applications in chemistry, biology, and materials science. In: Kawata S, Shalaev V (eds) Tip enhancement. Elsevier, AmsterdamGoogle Scholar
  22. 22.
    Anderson MS, Gaimari SD (2003) J Struct Biol 142:364–368CrossRefGoogle Scholar
  23. 23.
    Neugebauer U, Rosch P, Schmitt M, Popp J, Julien C, Rasmussen A, Budich C, Deckert V (2006) Chem Phys Chem 7:1428–1430Google Scholar
  24. 24.
    Neugebauer U, Schmid U, Baumann K, Ziebuhr W, Kozitskaya S, Deckert V, Schmitt M, Popp J (2007) Chem Phys Chem 8:124–137Google Scholar
  25. 25.
    Yeo BS, Mädler S, Schmid T, Zhang W, Zenobi R (2008) J Phys Chem C 112:4867–4873Google Scholar
  26. 26.
    Bailo E, Deckert V (2008) Angew Chem Int Edit 47:1658–1661CrossRefGoogle Scholar
  27. 27.
    Hayazawa N, Watanabe H, Saito Y, Kawata S (2006) J Chem Phys 125:Google Scholar
  28. 28.
    Vannier C, Yeo BS, Melanson J, Zenobi R (2006) Rev Sci Instrum 77:023104CrossRefGoogle Scholar
  29. 29.
    Yeo BS, Zhang W, Vannier C, Zenobi R (2006) Appl Spectrosc 60:1142–1147CrossRefGoogle Scholar
  30. 30.
    Yeo BS, Schmid T, Zhang W, Zenobi R (2007) Anal Bioanal Chem 387:2655–2662CrossRefGoogle Scholar
  31. 31.
    Cui X, Zhang W, Yeo BS, Zenobi R, Hafner C, Erni D (2007) Opt Express 15:8309–8316CrossRefGoogle Scholar
  32. 32.
    Zhang W, Cui XD, Yeo BS, Schmid T, Hafner C, Zenobi R (2007) Nano Lett 7:1401–1405CrossRefGoogle Scholar
  33. 33.
    Skjakbraek G, Murano E, Paoletti S (1989) Biotechnol Bioeng 33:90–94CrossRefGoogle Scholar
  34. 34.
    Kudelski A, Pettinger B (2000) Chem Phys Lett 321:356–362CrossRefGoogle Scholar
  35. 35.
    Yonezawa Y, Sato T, Ohno M, Hada H (1987) J Chem Soc Faraday T I 83:1559–1567CrossRefGoogle Scholar
  36. 36.
    McIntire TM, Brant DA (1997) Imaging carbohydrate polymers with noncontact mode atomic force microscopy. In: Townsend RR, Hotchkiss AT (eds) Techniques in glycobiology. Marcel Dekker, New YorkGoogle Scholar
  37. 37.
    Decho AW (1999) Carbohydr Res 315:330–333CrossRefGoogle Scholar
  38. 38.
    Sartori C, Finch DS, Ralph B, Gilding K (1997) Polymer 38:43–51CrossRefGoogle Scholar
  39. 39.
    Deacon GB, Phillips RJ (1980) Coord Chem Rev 33:227–250CrossRefGoogle Scholar
  40. 40.
    Yeo BS, Chen ZH, Sim WS (2003) Langmuir 19:2787–2794CrossRefGoogle Scholar
  41. 41.
    Adebajo MO, Frost RL, Kloprogge JT, Kokot S (2006) Spectrochim Acta A 64:448–453CrossRefGoogle Scholar
  42. 42.
    Ferrari AC, Robertson J (2001) Phys Rev B 64:075414CrossRefGoogle Scholar
  43. 43.
    Schenzel K, Fischer S (2001) Cellulose 8:49–57CrossRefGoogle Scholar
  44. 44.
    Ribeiro CC, Barrias CC, Barbosa MA (2004) Biomaterials 25:4363–4373CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Thomas Schmid
    • 1
  • Andreas Messmer
    • 1
  • Boon-Siang Yeo
    • 1
  • Weihua Zhang
    • 1
  • Renato Zenobi
    • 1
  1. 1.Department of Chemistry and Applied BiosciencesETH ZurichZurichSwitzerland

Personalised recommendations