Analytical and Bioanalytical Chemistry

, Volume 391, Issue 5, pp 1899–1905 | Cite as

Towards chemical analysis of nanostructures in biofilms I: imaging of biological nanostructures

  • Thomas Schmid
  • Johannes Burkhard
  • Boon-Siang Yeo
  • Weihua Zhang
  • Renato Zenobi
Original Paper

Abstract

Due to their direct influence on the stability of bacterial biofilms, a better insight into the nanoscopic spatial arrangement of the different extracellular polymeric substances (EPS), e.g., polysaccharides and proteins, is important for the improvement of biocides and for process optimization in wastewater treatment and biofiltration. Here, the first application of a combination of confocal laser-scanning microscopy (CLSM) and atomic force microscopy (AFM) to the investigation of river-water biofilms and related biopolymers is presented. AFM images collected at selected areas of CLS micrographs dramatically demonstrate the heterogeneity of biofilms at the nanometer scale and the need for a chemical imaging method with nanoscale resolution. The nanostructures (e.g., pili, flagella, hydrocolloids, and EPS) found in the extracellular matrix are classified according to shape and size, which is typically 50–150 nm in width and 1–10 nm in thickness, and sets the demands regarding spatial resolution of a potential chemical imaging method. Additionally, thin layers of the polysaccharide alginate were investigated. We demonstrate that calcium alginate is a good model for the EPS architecture at the nanometer scale, because of its similar network-like structure.

Figure

CLSM-AFM allows imaging of nanometer-sized extracellular structures

Keywords

Biofilm Extracellular polymeric substances (EPS) Alginate Confocal laser-scanning microscopy (CLSM) Atomic force microscopy (AFM) 

References

  1. 1.
    Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappinscott HM (1995) Annu Rev Microbiol 49:711–745CrossRefGoogle Scholar
  2. 2.
    Sutherland IW (2001) Trends Microbiol 9:222–227CrossRefGoogle Scholar
  3. 3.
    O’Flaherty V, Moran AP, Stoodley P, Mahony T, Lens P (2003) Biofilms in medicine, industry and environmental biotechnology - characteristics, analysis and control. IWA, LondonGoogle Scholar
  4. 4.
    Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Annu Rev Microbiol 56:187–209CrossRefGoogle Scholar
  5. 5.
    Watnick P, Kolter R (2000) J Bacteriol 182:2675–2679CrossRefGoogle Scholar
  6. 6.
    Branda SS, Vik A, Friedman L, Kolter R (2005) Trends Microbiol 13:20–26CrossRefGoogle Scholar
  7. 7.
    Sutherland IW (2001) Microbiol-UK 147:3–9Google Scholar
  8. 8.
    Flemming HC (2002) Appl Microbiol Biot 59:629–640CrossRefGoogle Scholar
  9. 9.
    Bishop PL, Wilderer PA, Wuertz S (2003) Biofilms in wastewater treatment - an interdisciplinary approach. IWA, LondonGoogle Scholar
  10. 10.
    Costerton JW, Stewart PS, Greenberg EP (1999) Science 284:1318–1322CrossRefGoogle Scholar
  11. 11.
    Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Trends Microbiol 13:34–40CrossRefGoogle Scholar
  12. 12.
    Neu TR, Lawrence JR (1997) FEMS Microbiol Ecol 24:11–25CrossRefGoogle Scholar
  13. 13.
    Johnsen AR, Hausner M, Schnell A, Wuertz S (2000) Appl Environ Microbiol 66:3487–3491CrossRefGoogle Scholar
  14. 14.
    Zhang XQ, Bishop PL (2001) J Environ Eng-ASCE 127:850–856CrossRefGoogle Scholar
  15. 15.
    Auerbach ID, Sorensen C, Hansma HG, Holden PA (2000) J Bacteriol 182:3809–3815CrossRefGoogle Scholar
  16. 16.
    Beech IB, Smith JR, Steele AA, Penegar I, Campbell SA (2002) Colloid Surf B-Biointerfaces 23:231–247CrossRefGoogle Scholar
  17. 17.
    Pelling AE, Li YN, Shi WY, Gimzewski JK (2005) Proc Natl Acad Sci USA 102:6484–6489CrossRefGoogle Scholar
  18. 18.
    Hansma PK, Walters DA, Hillner PE (1996) US Patent 5,581,082Google Scholar
  19. 19.
    Hillner PE, Walters DA, Lal R, Hansma HG, Hansma PK (1995) Microsc Microanal 1:127–130Google Scholar
  20. 20.
    Lal R, Proksch R (1997) Int J Imaging Syst Technol 8:293–300CrossRefGoogle Scholar
  21. 21.
    McNally HA, Rajwa B, Sturgis J, Robinson JP (2005) J Neurosci Methods 142:177–184CrossRefGoogle Scholar
  22. 22.
    Schmid T, Messmer A, Yeo BS, Zhang W, Zenobi R (2008) Anal Bioanal Chem, DOI 10.1007/s00216-008-2101-1
  23. 23.
    Tielen P, Strathmann M, Jaeger KE, Flemming HC, Wingender J (2005) Microbiol Res 160:165–176CrossRefGoogle Scholar
  24. 24.
    Wloka M, Rehage H, Flemming HC, Wingender J (2004) Colloid Polym Sci 282:1067–1076CrossRefGoogle Scholar
  25. 25.
    Stöckle RM, Suh YD, Deckert V, Zenobi R (2000) Chem Phys Lett 318:131–136CrossRefGoogle Scholar
  26. 26.
    Anderson MS (2000) Appl Phys Lett 76:3130–3132CrossRefGoogle Scholar
  27. 27.
    Schmid T, Yeo BS, Zhang W, Zenobi R (2007) Use of tip-enhanced vibrational spectroscopy for analytical applications in chemistry, biology, and materials science. In: Kawata S, Shalaev V (eds) Tip Enhancement. Elsevier, AmsterdamGoogle Scholar
  28. 28.
    Strathmann M, Griebe T, Flemming HC (2000) Appl Microbiol Biot 54:231–237CrossRefGoogle Scholar
  29. 29.
    Vannier C, Yeo BS, Melanson J, Zenobi R (2006) Rev Sci Instrum 77:023104CrossRefGoogle Scholar
  30. 30.
    Schmid T, Panne U, Haisch C, Hausner M, Niessner R (2002) Environ Sci Technol 36:4135–4141CrossRefGoogle Scholar
  31. 31.
    Schmid T, Panne U, Adams J, Niessner R (2004) Water Res 38:1189–1196CrossRefGoogle Scholar
  32. 32.
    Wilderer PA, Bungartz HJ, Lemmer H, Wagner M, Keller J, Wuertz S (2002) Water Res 36:370–393CrossRefGoogle Scholar
  33. 33.
    Schmid T, Schmitz TA, Setz PD, Yeo BS, Zhang W, Zenobi R (2006) Chimia 60:A783–A788CrossRefGoogle Scholar
  34. 34.
    Telford JL, Barocchi MA, Margarit I, Rappuoli R, Grandi G (2006) Nat Rev Microbiol 4:509–519CrossRefGoogle Scholar
  35. 35.
    Plaschke M, Romer J, Klenze R, Kim JI (1999) Colloid Surf A-Physicochem Eng Asp 160:269–279CrossRefGoogle Scholar
  36. 36.
    Wilkinson KJ, Balnois E, Leppard GG, Buffle J (1999) Colloid Surf A-Physicochem Eng Asp 155:287–310CrossRefGoogle Scholar
  37. 37.
    Chourpa I, Carpentier P, Maingault P, Dubois P (1999) Proc SPIE 3608:48–54CrossRefGoogle Scholar
  38. 38.
    Chourpa I, Carpentier P, Maingault P, Fetissoff F, Dubois P (2000) Proc SPIE 3918:166–173CrossRefGoogle Scholar
  39. 39.
    Evans LR, Linker A (1973) J Bacteriol 116:915–924Google Scholar
  40. 40.
    Rehm BHA, Valla S (1997) Appl Microbiol Biot 48:281–288CrossRefGoogle Scholar
  41. 41.
    Flemming HC, Wingender J (2002) Chem unserer Zeit 36:30–42CrossRefGoogle Scholar
  42. 42.
    Hayazawa N, Yano T, Watanabe H, Inouye Y, Kawata S (2003) Chem Phys Lett 376:174–180CrossRefGoogle Scholar
  43. 43.
    Hartschuh A, Anderson N, Novotny L (2003) J Microsc-Oxford 210:234–240CrossRefGoogle Scholar
  44. 44.
    Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2005) J Raman Spectrosc 36:541–550CrossRefGoogle Scholar
  45. 45.
    Mehtani D, Lee N, Hartschuh RD, Kisliuk A, Foster MD, Sokolov AP, Maguire JF (2005) J Raman Spectrosc 36:1068–1075CrossRefGoogle Scholar
  46. 46.
    Hartschuh A, Sanchez EJ, Xie XS, Novotny L (2003) Phys Rev Lett 90:095503CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Thomas Schmid
    • 1
  • Johannes Burkhard
    • 1
  • Boon-Siang Yeo
    • 1
  • Weihua Zhang
    • 1
  • Renato Zenobi
    • 1
  1. 1.Department of Chemistry and Applied BiosciencesETH ZurichZurichSwitzerland

Personalised recommendations