Advertisement

Analytical and Bioanalytical Chemistry

, Volume 391, Issue 3, pp 1073–1079 | Cite as

Molecularly imprinted solid-phase extraction and flow-injection chemiluminescence for trace analysis of 2,4-dichlorophenol in water samples

  • Qin-Zhong Feng
  • Li-Xia ZhaoEmail author
  • Wei Yan
  • Feng Ji
  • Yan-Lin Wei
  • Jin-Ming LinEmail author
Original Paper

Abstract

Highly sensitive flow-injection chemiluminescence (CL) combined with molecularly imprinted solid-phase extraction (MISPE) has been used for determination of 2,4-dichlorophenol (2,4-DCP) in water samples. The molecularly imprinted polymer (MIP) for 2,4-DCP was prepared by non-covalent molecular imprinting methods, using 4-vinylpyridine (4-VP) and ethylene glycol dimethacrylate (EGDMA) as the monomer and cross-linker, respectively. 2,4-DCP could be selectively adsorbed by the MIP and the adsorbed 2,4-DCP was determined by its enhancing effect on the weak chemiluminescence reaction between potassium permanganate and luminol. The enhanced CL intensity was linear in the range from 1 × 10−7 to 2 × 10−5g mL−1. The LOD (S/N = 3) was 1.8 × 10−8g mL−1, and the relative standard deviation (RSD) was 3.0% (n = 11) for 1.4 × 10−6g mL−1. The proposed method had been successfully applied to the determination of 2,4-DCP in river water.

Figure

Effect of 4-VP content on the ultraviolet spectrum of 2,4-DCP in chloroform

Keywords

Molecularly imprinted polymer 2, 4-Dichlorophenol Flow chemiluminescence Molecularly imprinted solid-phase extraction 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 20437020 and 20621703) and the Major Research Program of the Chinese Academy of Sciences (KZCX3-SW-432).

References

  1. 1.
    Gary W, Gary L, James T (1982) Arch Environ Contam Toxicol 11:73–82CrossRefGoogle Scholar
  2. 2.
    Li XD, Yue YD, Hua R, Huang HS, Yu L, Liao M, Li XH (2002) Agro-Environ Prot 21:156–158Google Scholar
  3. 3.
    Tsuji N, Hirooka T, Nagase H, Hirata K, Miyamoto K (2003) Biotechnol Lett 25:241–244CrossRefGoogle Scholar
  4. 4.
    Contreras S, Rodríguez M, Al Momani F, Sans C, Esplugas S (2003) Water Res 37:3164–3171CrossRefGoogle Scholar
  5. 5.
    Swaminathan G, Ramanujam TK (1999) Bioprocess Eng 21:169–173CrossRefGoogle Scholar
  6. 6.
    Oliveira R, Manuel FA, Santos L, Madeira LM (2006) Ind Eng Chem Res 45:1266–1276CrossRefGoogle Scholar
  7. 7.
    Gao JJ, Liu LH, Liu XR, Zhou HD, Huang SB, Wang ZJ (2007) Chemosphere, in pressGoogle Scholar
  8. 8.
    Wang HT, Zhu K, Wei X, Zhang L, Yang JT, Ma J (2003) J Lanzhou Railway University 22:31–33Google Scholar
  9. 9.
    Ureta-Zañartu MS, Bustos P, Berríos C, Diez MC, Mora ML, Gutiérrez C (2002) Electrochim Acta 47:2399–2406CrossRefGoogle Scholar
  10. 10.
    Hahn D, Cozzolino A, Piccolo A, Armenante PM (2007) Ecotoxicol Environ Saf 66:335–342CrossRefGoogle Scholar
  11. 11.
    Laurent F, Debrauwer L, Pascal-Lorber S (2006) Pest Manag Sci 62:558–564CrossRefGoogle Scholar
  12. 12.
    Gallizia I, McClean S, Banat IM (2003) J Chem Technol Biotechnol 78:959–963CrossRefGoogle Scholar
  13. 13.
    Drzewicz P, Pahta P, Gluszewski W, Trojanowicz M (1999) J Radioanal Nucl Chem 242:601–609CrossRefGoogle Scholar
  14. 14.
    Zhang W, Danielson ND (2003) Anal Chim Acta 493:167–177CrossRefGoogle Scholar
  15. 15.
    Tsukagoshi K, Kameda T, Yamamoto M, Nakajima R (2002) J Chromatogr A 978:213–220CrossRefGoogle Scholar
  16. 16.
    Hindson BJ, Barnett NW (2001) Anal Chim Acta 445:1–19CrossRefGoogle Scholar
  17. 17.
    Yang CY, Zhang ZJ, Chen SM, Yang F (2007) Microchim Acta 159:299–304CrossRefGoogle Scholar
  18. 18.
    Xiong Y, Zhou HJ, Zhang ZJ, He DY, He C (2006) Analyst 31:829–834CrossRefGoogle Scholar
  19. 19.
    Caro E, Masque N, Marce RM, Borrulla F, Cormack PAG, Sherrington DC (2002) J Chromatogr A 963:169–178CrossRefGoogle Scholar
  20. 20.
    Muldoon MT, Stanker LH (1997) Anal Chem 69:803–808CrossRefGoogle Scholar
  21. 21.
    Andersson LI, Paprica A, Arvidsson T (1997) Chromatographia 46:57–62CrossRefGoogle Scholar
  22. 22.
    Urraca JL, Moreno-Bondi MC, Hall AJ, Sellergren B (2007) Anal Chem 79:695–701CrossRefGoogle Scholar
  23. 23.
    Caro E, Marce RM, Cormack Peter AG, Sherrington DC, Borrull F (2003) J Chromatogr A 995:233–238CrossRefGoogle Scholar
  24. 24.
    Masque N, Marce RM, Borrull F, Cormack PAG, Sherrington DC (2000) Anal Chem 72:4122–4126CrossRefGoogle Scholar
  25. 25.
    Garcia R, Pinel C, Madic C, Lemaire M (1998) Tetrahedron Lett 39:8651–8654CrossRefGoogle Scholar
  26. 26.
    Möller K, Nilsson U, Crescenzi C (2001) J Chromatogr A 938:121–130CrossRefGoogle Scholar
  27. 27.
    Tsuru N, Kikuchi M, Kawaguchi H, Shiratori S (2006) Thin Solid Films 449:380–385CrossRefGoogle Scholar
  28. 28.
    He DY, Zhang ZJ, Zhou HJ, Huang Y (2006) Talanta 69:1215–1220CrossRefGoogle Scholar
  29. 29.
    Lavignac N, Allender CJ, Brain KR (2004) Anal Chim Acta 510:139–145CrossRefGoogle Scholar
  30. 30.
    Piletsky SA, Piletska EV, Bossi A, Karim K, Lowe P, Turner APF (2001) Biosens Bioelectron 16:701–707CrossRefGoogle Scholar
  31. 31.
    Huang JT, Zheng SH, Zhang JQ (2004) Polymer 45:4349–4354CrossRefGoogle Scholar
  32. 32.
    Southard GE, Van Houten KA, Murray GM (2007) Macromolecules 40:1395–1400CrossRefGoogle Scholar
  33. 33.
    Xiong Y, Zhou HJ, Zhang ZJ, He DY, He C (2007) Spectrochim Acta A 66:341–346CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina

Personalised recommendations