Analytical and Bioanalytical Chemistry

, Volume 391, Issue 3, pp 1081–1089 | Cite as

Molecular iodine selective membrane for iodate determination in salt samples: chemical amplification and preconcentration

  • P. R. Bhagat
  • A. K. Pandey
  • R. Acharya
  • V. Natarajan
  • N. S. Rajurkar
  • A. V. R. Reddy
Original Paper

Abstract

A molecular iodine selective membrane has been used for preconcentration of I2 generated in situ by iodometric reaction of \({\text{IO}}_{\text{3}}^ - \) with excess I in acidic medium (pH 1–2). This iodometric reaction amplifies the iodine content six times resulting in enhancement of analytical response ranging from three times for molecular methods to six times for elemental methods. The chemical conditions of this iodometric reaction were optimized for quantitative generation and subsequent sorption of I2 in the membrane samples (96 ± 3%). The homogeneous transparent membrane was prepared by immobilizing I2-complexing polyvinylpyrrolidone (PVP) in the plasticized cellulose triacetate matrix. Four different analytical methods were examined for quantitative determination of \({\text{IO}}_{\text{3}}^ - \) in iodized salt samples by preconcentrating it as I2 in the membrane matrix. These methods were: (1) spectrophotometry of the PVP-I2 complex formed in the membrane matrix, (2) a radiotracer method using I tagged with 131I radiotracer, (3) instrumental neutron activation analysis (INAA), and (4) energy-dispersive X-ray fluorescence (EDXRF) analysis. The \({\text{IO}}_{\text{3}}^ - \) contents thus determined in the iodized salt samples by the membrane-based radiotracer method were compared with the total iodine determined in salt samples by epithermal instrumental neutron activation analysis (EINAA). The membrane-based method for iodate determination in salt samples has advantages over conventional analytical methods, for example preconcentration and chemical amplification, and is free from interference from anions.

Figure

A molecular iodine selective membrane was used for the quantitative preconcentration of I2 generated in situ by iodometric reaction of \({\text{IO}}_{\text{3}}^ - \) with excess I− in acidic medium, which amplifies iodine content six times

Keywords

Iodometric reaction Iodate Membrane Preconcentration Chemical amplification Iodized salt 

Notes

Acknowledgments

The authors thank Dr V.K. Manchanda, Head, Radiochemistry Division, Bhabha Atomic Research Centre (BARC), Professor R. S. Kusurkar, Head, Dept of Chemistry, Pune University, and Professor B.S.M. Rao, former Head, Dept of Chemistry, Pune University for their constant support and encouragement. One of the Authors (P.B.) thanks the Board of Research in Nuclear Sciences (BRNS), DAE, India for financial assistance of the project under BARC- Pune University MoU.

References

  1. 1.
    Crecelius EA (1975) Anal Chem 47:2034–2035CrossRefGoogle Scholar
  2. 2.
    Maros L, Káldy M, Igaz S (1989) Anal Chem 61:733–735CrossRefGoogle Scholar
  3. 3.
    Yokota K, Fukushi K, Ishio N, Sasayama N, Nakayama Y, Takeda S, Wakida S (2003) Electrophoresis 24:2244–2251CrossRefGoogle Scholar
  4. 4.
    Gu F, Marchetti AA, Straume T (1997) Analyst 122:535–537CrossRefGoogle Scholar
  5. 5.
    Edmonds JS, Morita M (1998) Pure Appl Chem 70:1567–1584CrossRefGoogle Scholar
  6. 6.
    Kumar SD, Maiti B, Mathur PK (2001) Talanta 53:701–705CrossRefGoogle Scholar
  7. 7.
    Agrawal O, Sunita G, Gupta VK (1999) Talanta 49:923–928CrossRefGoogle Scholar
  8. 8.
    Pasha C, Narayana B (2006) Acta Chim Slov 53:77–80Google Scholar
  9. 9.
    Wong GTF, Brewer PG (1976) Anal Chim Acta 81:81–90CrossRefGoogle Scholar
  10. 10.
    Shin H-S, Oh-Shin Y-S, Kim J-H, Ryu J-K (1996) J Chromatogr A 732:327–333CrossRefGoogle Scholar
  11. 11.
    Liang A-H, Jiang Z-L, Zhang B-M, Liu Q-Y, Lan J, Lu X (2005) Anal Chim Acta 530:131–134CrossRefGoogle Scholar
  12. 12.
    Pereira FC, Moretto LM, Leo MD, Zanoni MVB, Ugo P (2006) Anal Chim Acta 575:16–24CrossRefGoogle Scholar
  13. 13.
    Bermejo-Barrera P, Aboal-Somoza M, Bermejo-Barrera A (1999) J Anal At Spectrom 14:1009–1018CrossRefGoogle Scholar
  14. 14.
    Bhagat PR, Pandey AK, Acharya R, Nair AGC, Rajurkar NS, Reddy AVR (2007) Talanta 71:1226–1232CrossRefGoogle Scholar
  15. 15.
    Sodaye S, Suresh G, Pandey AK, Goswami A (2006) Radiochim Acta 94:347–350CrossRefGoogle Scholar
  16. 16.
    Sodaye S, Suresh G, Pandey AK, Goswami A (2007) J Membr Sci 295:108–113CrossRefGoogle Scholar
  17. 17.
    Marcus Y (1991) J Chem Soc Faraday Trans 87:2995–2999CrossRefGoogle Scholar
  18. 18.
    Chen ZuL, Megharaj M, Naidu R (2007) Talanta 72:1842–1846CrossRefGoogle Scholar
  19. 19.
    Xu XR, Li HB, Gu J-D, Paeng KJ (2004) Chromatographia 60:721–723CrossRefGoogle Scholar
  20. 20.
    Yao S-Z, Chen P, Wei W-Z (1999) Food Chem 67:311–316CrossRefGoogle Scholar
  21. 21.
    Afkhami A, Madrakian T, Baharam M (2005) J Hazard Mater B 123:250–255CrossRefGoogle Scholar
  22. 22.
    Ni Y, Wang Y (2007) Microchem J 86:216–226CrossRefGoogle Scholar
  23. 23.
    Ghasemi J, Saaidpour S, Ensafi AA (2004) Anal Chim Acta 508:216–226CrossRefGoogle Scholar
  24. 24.
    El Shahawi MS, Farag AB (1995) Anal Chim Acta 307:139–144CrossRefGoogle Scholar
  25. 25.
    Zhang M, Zhan G, Chen Z (1998) Anal Sci 14:1077–1083CrossRefGoogle Scholar
  26. 26.
    Cournoyer RF, Siggia S (1974) J Polym Sci Polym Chem 12:603–612Google Scholar
  27. 27.
    Schenck H-U, Simak P, Haedicke E (1979) J Pharm Sci 68:1505–1509CrossRefGoogle Scholar
  28. 28.
    de Faria DLA, Gil HAC, Queiroz AAA (1999) J Mol Struct 479:93–98CrossRefGoogle Scholar
  29. 29.
    Arena MP, Porter MD, Fritz JS (2002) Anal Chem 74:185–190CrossRefGoogle Scholar
  30. 30.
    Gazda DB, Lipert RJ, Fritz JS, Porter MD (2004) Anal Chim Acta 510:241–247CrossRefGoogle Scholar
  31. 31.
    Xing CM, Deng J-P, Yang W-T (2005) J Appl Polym Sci 97:2026–2031CrossRefGoogle Scholar
  32. 32.
    Bhagat PR, Pandey AK, Acharya R, Nair AGC, Rajurkar NS, Reddy AVR (2008) Talanta 74:1313–1320CrossRefGoogle Scholar
  33. 33.
    Pierce WC, Haenisch EL (1945) Quantitative analysis. 2nd edn. Wiley, New York, pp 199–216Google Scholar
  34. 34.
    Currie LA (1968) Anal Chem 40:586CrossRefGoogle Scholar
  35. 35.
    Serfor-Armah Y, Nyarko BJB, Holzbecher J, Akaho EHK, Osae EK, Chatt A (2003) J Radioanal Nucl Chem 256:259–262CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • P. R. Bhagat
    • 1
  • A. K. Pandey
    • 2
  • R. Acharya
    • 2
  • V. Natarajan
    • 2
  • N. S. Rajurkar
    • 1
  • A. V. R. Reddy
    • 2
  1. 1.Department of ChemistryUniversity of PunePuneIndia
  2. 2.Radiochemistry DivisionBhabha Atomic Research CentreTrombay, MumbaiIndia

Personalised recommendations