Analytical and Bioanalytical Chemistry

, Volume 391, Issue 4, pp 1459–1468 | Cite as

Particulate matter analysis at elementary schools in Curitiba, Brazil

  • Devanir AvigoJr.
  • Ana F. L. Godoi
  • Paulo R. Janissek
  • Yaroslava Makarovska
  • Agnieszka Krata
  • Sanja Potgieter-Vermaak
  • Balint Alfoldy
  • René Van Grieken
  • Ricardo H. M. Godoi
Original Paper


The particulate matter indoors and outdoors of the classrooms at two schools in Curitiba, Brazil, was characterised in order to assess the indoor air quality. Information concerning the bulk composition was provided by energy-dispersive x-ray fluorescence (EDXRF). From the calculated indoor/outdoor ratios and the enrichment factors it was observed that S-, Cl- and Zn-rich particles are of concern in the indoor environment. In the present research, the chemical compositions of individual particles were quantitatively elucidated, including low-Z components like C, N and O, as well as higher-Z elements, using automated electron probe microanalysis low Z EPMA. Samples were further analysed for chemical and morphological aspects, determining the particle size distribution and classifying them according to elemental composition associations. Five classes were identified based on major elemental concentrations: aluminosilicate, soot, organic, calcium carbonate and iron-rich particles. The majority of the respirable particulate matter found inside of the classroom was composed of soot, biogenic and aluminosilicate particles. In view of the chemical composition and size distribution of the aerosol particles, local deposition efficiencies in the human respiratory system were calculated revealing the deposition of soot at alveolar level. The results showed that on average 42% of coarse particles are deposited at the extrathoracic level, whereas 24% are deposited at the pulmonary region. The fine fraction showed a deposition rate of approximately 18% for both deposition levels.


Indoor environment Particulate matter Schools Lung deposition 


  1. 1.
    Sandstro TM, Nowak D, Van Bree L (2005) Eur Respir J 26:187–188CrossRefGoogle Scholar
  2. 2.
    Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG Jr, Speizer FE (1993) N Engl J Med 329:1753–1759CrossRefGoogle Scholar
  3. 3.
    Brunekreef B, Holgate ST (2002) Lancet 360:1233–1242CrossRefGoogle Scholar
  4. 4.
    Kaushik CP, Ravindra K, Yadav K, Mehta S, Haritash AK (2006) Environ Monit Assess 122:27–40CrossRefGoogle Scholar
  5. 5.
    Pope CA, Dockery DW (2006) J Air Waste Manage 56:709–742Google Scholar
  6. 6.
    Adler KB, Fischer BM (1994) Ann N Yk Acad Sci 725:128–145Google Scholar
  7. 7.
    Fubini B, Mollo L, Giamello E (1995) Free Radic Res 23:593–561CrossRefGoogle Scholar
  8. 8.
    Gilmour PS, Brown DM, Lindsay TG, Beswick PH, MacNee W, Donaldson K (1996) Occup Environ Med 53:817–822CrossRefGoogle Scholar
  9. 9.
    Berube KA, Jones TP, Williamson BJ, Winters C, Morgan AJ, Richards RJ (1999) Atmos Environ 33:1599–1614CrossRefGoogle Scholar
  10. 10.
    Pearson RL, Wachtel H, Ebi KL (2000) J Air Waste Manage Assoc 50:175–180Google Scholar
  11. 11.
    Peng CY, Lin TS (2007) Bull Environ Contam Toxicol 78:95–98CrossRefGoogle Scholar
  12. 12.
    Poupard O, Blondeau P, Iordache V, Allard F (2005) Atmos Environ 39:2071–2080CrossRefGoogle Scholar
  13. 13.
    Blondeau P, Iordache V, Poupard O, Genin D, Allard F (2005) Indoor Air 15:2–12CrossRefGoogle Scholar
  14. 14.
    Mendell MJ, Heath GA (2005) Indoor Air 15:27–52CrossRefGoogle Scholar
  15. 15.
    Kuruvilla J, Saritha K, Kevin C, Myoungwoo K, Amol K (2007) J Air Waste Manage Assoc 57:394–406Google Scholar
  16. 16.
    Meza-Figueroa D, De la O-Villanueva M, De la Parra ML (2007) Atmos Environ 41:276–288CrossRefGoogle Scholar
  17. 17.
    Mi Y-H, Norbäck D, Tao J, Mi Y-L, Ferm M (2006) Indoor Air 16:454–464CrossRefGoogle Scholar
  18. 18.
    Zhao ZH, Elfman L, Wang ZH, Zhang Z, Norbäck D (2006) Indoor Air 16:404–413CrossRefGoogle Scholar
  19. 19.
    Godoi RHM, Godoi AFL, Worobiec A, Andrade SJ, de Hoog J, Santiago-Silva MR, Van Grieken R (2004) Microchim Acta 145:53–56CrossRefGoogle Scholar
  20. 20.
    Godoi RHM, Kontozova V, Van Grieken R (2006) Atmos Environ 40:1255–1265CrossRefGoogle Scholar
  21. 21.
    Environmental Institute of Paraná (2008) Instituto Ambiental do Paraná (IAP). Accessed 26 Feb 2008
  22. 22.
    Ro CU, Osan J, Szaloki I, de Hoog J, Worobiec A, Van Grieken R (2003) Anal Chem 75:851–859CrossRefGoogle Scholar
  23. 23.
    Bondarenko B, Treiger R, Van Grieken R, Van Espen P (1996) Spectrochim Acta B 51:441–456CrossRefGoogle Scholar
  24. 24.
    Koblinger L, Hofmann W (1985) Phys Med Biol 30:541–556CrossRefGoogle Scholar
  25. 25.
    Raabe OG, Yeh HC, Schum GM, Phalen RF (1976) Lovelace Foundation Report LF-53Google Scholar
  26. 26.
    Koblinger L, Hofmann W (1990) J Aerosol Sci 21:661–674CrossRefGoogle Scholar
  27. 27.
    Cheng YS (2003) Aerosol Sci Technol 37:659–671CrossRefGoogle Scholar
  28. 28.
    Spolnik Z, Belikov K, van Meel K, Adriaenssens E, de Roeck F, van Grieken R (2005) Appl Spectrosc 59:1465–1469CrossRefGoogle Scholar
  29. 29.
    John K, Crist K, Kim M, Karnae S, Kulkarni A (2007) J Air Waste Manage 57:394–406Google Scholar
  30. 30.
    Carter JD, Ghio AJ, Samet JM, Devlin RB (1997) Toxicol Appl Pharmacol 146:180–188CrossRefGoogle Scholar
  31. 31.
    Singh M, Jaques PA, Sioutas C (2002) Atmos Environ 36:1675–1689CrossRefGoogle Scholar
  32. 32.
    Liu QT, Diamond ME, Gingrich SE, Ondov JM, Maciejczyk P, Gary AS (2003) Environ Pollut 122:51–61CrossRefGoogle Scholar
  33. 33.
    Mason B (1966) Principles of geochemistry. Wiley, New YorkGoogle Scholar
  34. 34.
    Cooper JA, Redline DC, Sherman JR, Valdovinos LM, Pollard WL, Scavone LC, Badgett-West C (1987) PM10 source composition library for the South Coast Air Basin, vols I & II. El Monte, CAGoogle Scholar
  35. 35.
    Abrahams PW (2002) Sci Total Environ 291:1–32CrossRefGoogle Scholar
  36. 36.
    Menetrez MY, Foarde KK (2004) Indoor Built Environ 13:75–82CrossRefGoogle Scholar
  37. 37.
    Brunekreef B, Forsberg B (2005) Eur Respir J 26:309–318BCrossRefGoogle Scholar
  38. 38.
    Kleeman MJ, Schauer JJ, Cass GR (2000) Environ Sci Technol 34:1132–1142CrossRefGoogle Scholar
  39. 39.
    Funasaka K, Miyazaki T, Tsuruho K, Tamura K, Mizuno T, Kuroda K (2000) Environ Pollut 110:127–134CrossRefGoogle Scholar
  40. 40.
    Abt E, Suh HH, Catalano P, Koutrakis P (2000) Environ Sci Technol 34:3579–3587CrossRefGoogle Scholar
  41. 41.
    Gray HA, Cass GR (1998) Atmos Environ 32:3805–3825CrossRefGoogle Scholar
  42. 42.
    Pandya R, Solomon G, Kinner A, Balmes J (2002) Environ Health Perspect 110(Suppl 1):103–112Google Scholar
  43. 43.
    Woisetschlager G, Dutz M, Paul S, Schreiner M (2000) Mikrochim Acta 135:121–130Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Devanir AvigoJr.
    • 1
  • Ana F. L. Godoi
    • 1
  • Paulo R. Janissek
    • 1
  • Yaroslava Makarovska
    • 2
  • Agnieszka Krata
    • 2
  • Sanja Potgieter-Vermaak
    • 3
  • Balint Alfoldy
    • 4
  • René Van Grieken
    • 2
  • Ricardo H. M. Godoi
    • 1
  1. 1.Positivo UniversityCuritibaBrazil
  2. 2.Department of ChemistryUniversity of AntwerpAntwerpBelgium
  3. 3.Molecular Science Institute, School of ChemistryUniversity of the WitwatersrandWitsSouth Africa
  4. 4.Health Physics DepartmentKFKI Atomic Energy Research InstituteBudapestHungary

Personalised recommendations