Analytical and Bioanalytical Chemistry

, Volume 391, Issue 5, pp 1813–1820

Colloidal-based localized surface plasmon resonance (LSPR) biosensor for the quantitative determination of stanozolol

  • Mark P. Kreuzer
  • Romain Quidant
  • J.-Pablo Salvador
  • M.-Pilar Marco
  • Gonçal Badenes
Original Paper
  • 578 Downloads

Abstract

This work reports the systematic preparation of biosensors through the use of functionalized glass substrates, noble metal gold colloid, and measurement by localized surface plasmon resonance (LSPR). Glass substrate was modified through chemical silanization, and the density of gold colloid was carefully controlled by optimizing the conditions of silanization through the use of mixed silanes and selective mixing procedures. At this point, samples were exposed to bioreagents and changes in the shallow dielectric constant around the particles were observed by dark-field spectroscopy. Biological binding of high affinity systems (biotin/streptavidin and antigen/antibody) was subsequently investigated by optimizing coating layers, receptor concentration profiling, and finally quantitative determination of the analyte of interest, which in this case was a small organic molecule—the widely used, synthetic anabolic steroid called stanozolol. For this system, high specificity was achieved (>97%) through extensive nonspecific binding tests, with a sensitivity measurable to a level below the minimum required performance level (MRPL) as determined by standard chromatographic methods. Analytical best-fit parameters of Hillslope and regression coefficient are also commented on for the final LSPR biosensor. The LSPR biosensor showed good reproducibility (<5% RSD) and allowed for rapid preparation of calibration curves and determination of the analyte (measurement time of each sample ca. 2 min). As an alternative method for quantitative steroidal analysis, this approach significantly simplifies the detection setup while reducing the cost of analysis. In addition the system maintains comparable sensitivity to standard surface plasmon resonance methods and offers great potential for miniaturization and development of multiplexed devices.

Figure

Schematic of sensor configuration indicating both min and max controls and associatedexample localized resonance curves

Keywords

Localized surface plasmon resonance Stanozolol Colloid Nanoparticles Biosensor 

Supplementary material

216_2008_2022_MOESM1_ESM.pdf (105 kb)
ESM 1(PDF 104 KB)

References

  1. 1.
    Gu JH, Lu H, Chen YW, Liu LY, Wang P, Ma JM, Lu ZH (1998) Supramol Sci 5:695–698CrossRefGoogle Scholar
  2. 2.
    He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, Keating CD (2000) J Am Chem Soc 122:9071–9077CrossRefGoogle Scholar
  3. 3.
    He L, Smith EA, Natan MJ, Keating CD (2004) J Phys Chem B 108:10973–10980CrossRefGoogle Scholar
  4. 4.
    Lyon LA, Musick MD, Natan MJ (1998) Anal Chem 70:5177–5183CrossRefGoogle Scholar
  5. 5.
    Lyon LA, Musick MD, Smith PC, Reiss BD, Peña DJ, Natan MJ (1999) Sens Actuators B 54:118–124CrossRefGoogle Scholar
  6. 6.
    Riboh JC, Haes AJ, McFarland AD, Yonzon CR, Van Duyne RP (2003) J Phys Chem B 107:1772–1780CrossRefGoogle Scholar
  7. 7.
    Enoch S, Quidant R, Badenes G (2004) Opt Express 12:3422–3427CrossRefGoogle Scholar
  8. 8.
    Rechberger W, Hohenau A, Leitner A, Krenn JR, Lamprecht B, Aussenegg FR (2003) Opt Comms 220:137–141CrossRefGoogle Scholar
  9. 9.
    Gascón J, Oubiña A, Ballesteros B, Barceló D, Camps F, Marco M-P, Angel González-Martínez M, Morais S, Puchades R, Maquieira A (1997) Anal Chim Acta 347:149–162CrossRefGoogle Scholar
  10. 10.
    Tätte T, Saal K, Kink I, Kurg A, Lõhmus R, Mäeorg U, Rahi M, Rinken A, Lõhmus A (2003) Surf Sci 532–535:1085–1091CrossRefGoogle Scholar
  11. 11.
    Malmqvist M (1993) Nature 361:186–187CrossRefGoogle Scholar
  12. 12.
    Jordan CE, Frutos AG, Thiel AJ, Corn RM (1997) Anal Chem 69:4939–4947CrossRefGoogle Scholar
  13. 13.
    Kalyuzhny G, Vaskevich A, Schneeweiss MA, Rubinstein I (2002) Chem Eur J 8:3849CrossRefGoogle Scholar
  14. 14.
    Schänzer W, Donike M (1993) Anal Chim Acta 275(1–2):23–48CrossRefGoogle Scholar
  15. 15.
    Merode A (1998) IOC guidelines, vol 8. IOC, LausanneGoogle Scholar
  16. 16.
    Soh N, Tokuda T, Watanabe T, Mishima K, Imato T, Masadome T, Asano Y, Okutani S, Niwa O, Brown S (2003) Talanta 60:733–745CrossRefGoogle Scholar
  17. 17.
    Cui X, Yang F, Sha Y, Yang X (2003) Talanta 60:53–61CrossRefGoogle Scholar
  18. 18.
    Ehrentreich-Förster E, Scheller FW, Bier FF (2003) Biosens Bioelectron 18:375–380CrossRefGoogle Scholar
  19. 19.
    Akkoyun A, Kohen VF, Bilitewski U (2000) Sens Actuators B 70:12–18CrossRefGoogle Scholar
  20. 20.
    Gillis EH, Gosling JP, Sreenan JM, Kane M (2002) J Immun Methods 267:131–138CrossRefGoogle Scholar
  21. 21.
    Raschke G, Kowarik S, Franzl T, Sönnichsen C, Klar TA, Feldmann J, Nichtl A, Kurzinger K (2003) Nano Letts 3:935–938CrossRefGoogle Scholar
  22. 22.
    Frederix F, Friedt JM, Choi KH, Laureyn W, Campitelli A, Mondelaers D, Maes G, Borghs G (2003) Anal Chem 75:6894–6900CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Mark P. Kreuzer
    • 1
  • Romain Quidant
    • 1
  • J.-Pablo Salvador
    • 2
  • M.-Pilar Marco
    • 2
  • Gonçal Badenes
    • 1
  1. 1.ICFO Institute of Photonic ScienceCastelldefelsSpain
  2. 2.Department of Biological Organic ChemistryCSICBarcelonaSpain

Personalised recommendations