Advertisement

Analytical and Bioanalytical Chemistry

, Volume 391, Issue 1, pp 381–390 | Cite as

Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry

  • Giuseppe Caruso
  • Chiara Cavaliere
  • Chiara Guarino
  • Riccardo Gubbiotti
  • Patrizia Foglia
  • Aldo LaganàEmail author
Original Paper

Abstract

In order to understand the molecular basis of salt stress response, a proteomic approach, employing two-dimensional electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS), was used to identify proteins affected by salinity in wheat (Triticum durum ‘Ofanto’). Identification of proteins, whose levels were altered, was performed by comparing protein patterns of salt-treated and control plants. A set of control plants was grown without NaCl addition under the same conditions as the salt-treated plants. Proteins were extracted from the leaves of untreated and NaCl-treated plants, and resolved using 24-cm immobilized pH gradient strips with a pH 4–7 linear gradient in the first dimension and a 12.5% sodium dodecyl sulphate polyacrylamide gel electrophoresis in the second dimension; the gels were stained with Coomassie and image analysis was performed. Quantitative evaluation, statistical analyses and MALDI-TOF MS characterization of the resolved spots in treated and untreated samples enabled us to identify 38 proteins whose levels were altered in response to salt stress. In particular, ten proteins were downregulated and 28 were upregulated. A possible role of these proteins in response to salinity is discussed.

Keywords

Matrix-assisted laser desorption/ionization time of flight Proteomics Salt stress Triticum durum Wheat Two-dimensional electrophoresis 

Notes

Acknowledgement

This work was supported by the Italian Department of Agriculture Food and Forestry, in the framework of Triticum durum quality programme (FRUMISIS project).

References

  1. 1.
    Flowers TJ, Yeo AR (1995) J Plant Physiol 22:875–884Google Scholar
  2. 2.
    Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Plant Physiol 130:2129–2141CrossRefGoogle Scholar
  3. 3.
    Zhu JK (2002) Annu Rev Plant Biol 53:247–273CrossRefGoogle Scholar
  4. 4.
    Greenway H, Munns R (1980) Annu Rev Plant Physiol 31:149–190CrossRefGoogle Scholar
  5. 5.
    Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Annu Rev Plant Physiol Plant Mol Biol 51:463–499CrossRefGoogle Scholar
  6. 6.
    Cushman JC, De Rocher EJ, Bohnert HJ (1990) In: Kalterman F (ed) Environmental injury of plants. Academic, San DiegoGoogle Scholar
  7. 7.
    Almoguera C, Coca MA, Jouanin L (1995) Plant Physiol 107:765–773Google Scholar
  8. 8.
    Munns R (2002) Plant Cell Environ 25:239–250CrossRefGoogle Scholar
  9. 9.
    Greenway H, Munns R (1980) Annu Rev Plant Physiol 31:149–190CrossRefGoogle Scholar
  10. 10.
    Williams K, Hochstarsser D (1997) In: Wilkins M, Williams K, Appel R, Hochstrasser D (eds) Proteome research: new frontiers in functional genomics. Springer, BerlinGoogle Scholar
  11. 11.
    Gygi S, Rochon Y, Fransz B, Aebersold R (1999) Mol Cell Biol 19:1720–1730Google Scholar
  12. 12.
    Abbasi FM, Komatsu S (2004) Proteomics 4:2072–2081CrossRefGoogle Scholar
  13. 13.
    Ndimba BK, Chivasa S, Simon WJ, Slabas AR (2005) Proteomics 5:4185–4196CrossRefGoogle Scholar
  14. 14.
    Dani V, Simon WJ, Duranti M, Croy RRD (2005) Proteomics 5:737–745CrossRefGoogle Scholar
  15. 15.
    Kong-ngern K, Daduang S, Wongkham C, Bunnag S, Kosittrakuna M, Theerakulpisuta P (2005) Sci Asia 31:403–408CrossRefGoogle Scholar
  16. 16.
    Kav NNV, Srivastava S, Goonewardene L, Blade SF (2004) Ann Appl Biol 145:217–230CrossRefGoogle Scholar
  17. 17.
    Ashraf M, Harrisb PJC (2004) Plant Sci 166:3–16CrossRefGoogle Scholar
  18. 18.
    Majoul T, Chahed K, Zamiti E, Ouelhazi L, Ghrir R (2000) Electrophoresis 21:2562–2565CrossRefGoogle Scholar
  19. 19.
    Ouerghi Z, Remy R, Ouelhazi L, Ayadi A, Brulfert J (2000) Electrophoresis 21:2487–2491CrossRefGoogle Scholar
  20. 20.
    Gygi SP, Aebersold R (2000) Curr Opin Chem Biol 4:489–494CrossRefGoogle Scholar
  21. 21.
    Damerval C, de Vienne D, Zivy M, Thiellement H (1986) Electrophoresis 7:52–54CrossRefGoogle Scholar
  22. 22.
    O’Farrel PH (1975) J Biol Chem. 250:4007–4021Google Scholar
  23. 23.
    Chivasa S, Ndimba BK, Simon WJ, Robertson D, Yu X, Knox JP, Bolwell P, Slabas AR (2002) Electrophoresis 23:1754–1765CrossRefGoogle Scholar
  24. 24.
    Laemmli UK (1970) Nature 227:680–685CrossRefGoogle Scholar
  25. 25.
    Parker KC, Garrels JI, Hines W, Butler EM, McKee HZ, Patterson D, Martini S (1998) Electrophoresis 19:1920–1932CrossRefGoogle Scholar
  26. 26.
    Moller IM (2001) Ann Rev Plant Physiol Plant Mol Biol 52:561–591CrossRefGoogle Scholar
  27. 27.
    Abbasi F, Komatsu S (2004) Proteomics 4:2072–2081CrossRefGoogle Scholar
  28. 28.
    Leah R, Kigel J, Svendsen I, Mundy J (1995) J Biol Chem 270:15789–15797CrossRefGoogle Scholar
  29. 29.
    Hughes MA, Brown K, Pancoro A, Murray BS, Oxtoby E, Hughes J (1992) Arch Biochem Biophys 295:273–279CrossRefGoogle Scholar
  30. 30.
    Brzobohaty B, Moore I, Kristoffersen P, Bako L, Campos N, Schell J, Palme K (1993) Science 262:1051–1054CrossRefGoogle Scholar
  31. 31.
    Jiang Y-Q, Deyholos MK (2006) BMC Plant Biol 6:25CrossRefGoogle Scholar
  32. 32.
    Lal SK, Johnson S, Conway T, Kelley PM (1991) Plant Mol Biol 16:787–795CrossRefGoogle Scholar
  33. 33.
    Iida H, Yahara I (1985) Nature 315:688–690CrossRefGoogle Scholar
  34. 34.
    Forsthoefel NR, Cushman MAF, Cushman JC (1995) Plant Physiol 108:1185–1195CrossRefGoogle Scholar
  35. 35.
    Riccardi F, Gazeau P, de Vienne D, Zivy M (1998) Plant Physiol 117:1253–1263CrossRefGoogle Scholar
  36. 36.
    Levy R (1979) Adv Enzymol 48:97–192Google Scholar
  37. 37.
    Nemoto Y, Sasakuma T (2000) Plant Sci 158:53–60CrossRefGoogle Scholar
  38. 38.
    Fougère F, Lerudulier D, Streeter JG (1991) Plant Physiol 96:1228–1236CrossRefGoogle Scholar
  39. 39.
    Di Martino C, DelWne S, Pizzuto R, Loreto F, Fuggi A (2003) New Phytol 158:455–463CrossRefGoogle Scholar
  40. 40.
    Hamilton EW, Heckathorn SA 3rd (2001) Plant Physiol 126:1266–1274CrossRefGoogle Scholar
  41. 41.
    Van Breusegem F, Dekeyser R, Gielen J, Van Montagu M, Caplan A (1994) Plant Physiol 105:1463–1464CrossRefGoogle Scholar
  42. 42.
    Ireland RJ, Lea PJ (1999) In: Singh BK (ed) Plant amino acids: biochemistry and biotechnology. Dekker, New YorkGoogle Scholar
  43. 43.
    Silveira JA, Viegas RA, da Rocha IM, Moreira AC, Moreira Rde A, Oliveira JT (2003) J Plant Physiol 160:115–123CrossRefGoogle Scholar
  44. 44.
    Apel K, Hirt H (2004) Annu Rev Plant Biol 55:373–399CrossRefGoogle Scholar
  45. 45.
    Hernandez JA, Jimenez A, Mullineaux P, Sevilla F (2000) Plant Cell Environ 23:853–862CrossRefGoogle Scholar
  46. 46.
    Asada K (1999) Annu Rev Plant Physiol Plant Mol Biol 50:601–639CrossRefGoogle Scholar
  47. 47.
    Smirnoff N (1993) New Phytol 125:27–58CrossRefGoogle Scholar
  48. 48.
    Arakaki AK, Ceccarelli EA, Carrillo N (1997) FASEB J 11:133–140Google Scholar
  49. 49.
    Hajrezael M-R, Peisker M, Tchiersch H, Palatnik J, Valle ME, Carrillo N, Sonnewald V (2002) Plant J 29:1–14CrossRefGoogle Scholar
  50. 50.
    Atkins CA, Patterson BD, Graham D (1972) Plant Physiol 50:214–217Google Scholar
  51. 51.
    Hewett-Emmett D, Tashian RE (1996) Mol Phylogenet Evol 5:50–77CrossRefGoogle Scholar
  52. 52.
    Hajduch M, Rakwal R, Agrawal GK, Yonekura M, Pretova A (2001) Electrophoresis 22:2824–2831CrossRefGoogle Scholar
  53. 53.
    Tsuda K, Tsvetanov S, Takumi S, Mori N, Atanassov A, Nakamura C (2000) Genes Genet Syst 75:179–88CrossRefGoogle Scholar
  54. 54.
    Martel R, Ctoney LP, Pelcher LE, Hemmingsen SM (1990) Gene 94:181–187CrossRefGoogle Scholar
  55. 55.
    Portis AR Jr (2003) Photosynth Res 751:11–27CrossRefGoogle Scholar
  56. 56.
    Parker R, Flowers TJ, Moore AL, Harpham NVJ (2006) J Exp Bot 57:1109–1118CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Giuseppe Caruso
    • 1
  • Chiara Cavaliere
    • 1
  • Chiara Guarino
    • 1
  • Riccardo Gubbiotti
    • 1
  • Patrizia Foglia
    • 1
  • Aldo Laganà
    • 1
    • 2
    Email author
  1. 1.Department of Chemistry“Sapienza” University of RomeRomeItaly
  2. 2.Dipartimento di Chimica“Sapienza” Università di RomaRomeItaly

Personalised recommendations