Analytical and Bioanalytical Chemistry

, Volume 390, Issue 8, pp 2141–2150 | Cite as

Development and application of molecularly imprinted polymers as solid-phase sorbents for erythromycin extraction

  • Suquan Song
  • Aibo Wu
  • Xizhi Shi
  • Rongxiu Li
  • Zhixin Lin
  • Dabing Zhang
Original Paper

Abstract

Six molecularly imprinted polymers (MIPs) of erythromycin (ERY) were prepared by noncovalent bulk polymerization using methacrylic acid (MAA) as the functional monomer. On the basis of binding analysis, the MIPs with 1:2 optimum ratio of template to MAA were selected for subsequent scanning electron microscopy and Brunauer–Emmett–Teller analyses, which indicated that the MIPs had more convergent porous structures than the nonimprinted polymers. The equilibrium binding experiments showed that the binding sites of MIPs were heterogeneous, with two dissociation constants of 0.005 and 0.63 mg mL−1, respectively. Furthermore, the performance of the MIPs as solid-phase extraction (SPE) sorbents was evaluated, and the selectivity analysis showed that the MIPs could recognize ERY with moderate cross-reactivity for other macrolides. The overall investigation of molecularly imprinted SPE for cleanup and enrichment of the ERY in pig muscle and tap water confirmed the feasibility of utilizing the MIPs obtained as specific SPE sorbents for ERY extraction in real samples.

Figure

Schematic diagram of the preparation and application of the erythromycin imprinted molecularly imprinted polymers

Keywords

Molecularly imprinted polymers Erythromycin Solid-phase extraction Pig muscle Tissue sample 

References

  1. 1.
    Leal C, Codony R, Compano R, Granados M, Prat MD (2001) J Chromatogr A 910:285–290CrossRefGoogle Scholar
  2. 2.
    European Union (2002) EMEA erythromycin summary report. Committee for Veterinary Medicinal ProductsGoogle Scholar
  3. 3.
    Kennedy DG, McCracken RJ, Cannavan A, Hewitt SA (1998) J Chromatogr A 812:77–98CrossRefGoogle Scholar
  4. 4.
    Pleasance S, Kelly J, LeBlanc MD, Quilliam MA, Boyd RK, Kitts DD, McErlane K, Bailey MR, North DH (1992) Biol Mass Spectrom 21:675–687CrossRefGoogle Scholar
  5. 5.
    Hennion MC (1999) J Chromatogr A 856:3–54CrossRefGoogle Scholar
  6. 6.
    Pichon V (2007) J Chromatogr A 1152:41–53CrossRefGoogle Scholar
  7. 7.
    Lanza F, Sellergren B (2001) Adv Chromatogr 41:137–173Google Scholar
  8. 8.
    Tamayo FG, Turiel E, Martin-Esteban A (2007) J Chromatogr A 1152:32–40CrossRefGoogle Scholar
  9. 9.
    Sellergren B (1997) Trends Anal Chem 16:310–320CrossRefGoogle Scholar
  10. 10.
    Sellergren B (2000) Angew Chem Int Ed 39:1031–1037CrossRefGoogle Scholar
  11. 11.
    Muldoon MT, Stanker LH (1997) Anal Chem 69:803–808CrossRefGoogle Scholar
  12. 12.
    Crescenzi C, Bayoudh S, Cormack PA, Klein T, Ensing K (2001) Anal Chem 73:2171–2177CrossRefGoogle Scholar
  13. 13.
    Siemann M, Andersson LI, Mosbach K (1997) J Antibiot (Tokyo) 50:89–91Google Scholar
  14. 14.
    Zhang Z, Liu Y, Long Y, Nie L, Yao S (2004) Anal Sci 20:291–295CrossRefGoogle Scholar
  15. 15.
    Dreassi E, Corti P, Bezzini F, Furlanetto S (2000) Analyst 125:1077–1081CrossRefGoogle Scholar
  16. 16.
    Yu HJ, Shen XS, Li Q, Huang DM, Chen YN, Guan LD (2006) Chin J Anal Lab 25:82–85Google Scholar
  17. 17.
    Cormack PA, Elorza AZ (2004) J Chromatogr B 804:173–182CrossRefGoogle Scholar
  18. 18.
    Karim K, Breton F, Rouillon R, Piletska EV, Guerreiro A, Chianella I, Piletsky SA (2005) Adv Drug Deliv Rev 57:1795–1808CrossRefGoogle Scholar
  19. 19.
    Sellergren B, Shea KJ (1993) J Chromatogr 635(1):31–49CrossRefGoogle Scholar
  20. 20.
    Sellergren B, Lepistö M, Mosbach K (1988) J Am Chem Soc 110:5853–5860CrossRefGoogle Scholar
  21. 21.
    Cederfur J, Pei Y, Zihui M, Kempe M (2003) J Comb Chem 5:67–72CrossRefGoogle Scholar
  22. 22.
    Rachkov A, Minoura N (2000) J Chromatogr A 889:111–118CrossRefGoogle Scholar
  23. 23.
    Yu C, Mosbach K (2000) J Chromatogr A 888:63–72CrossRefGoogle Scholar
  24. 24.
    Shi X, Wu A, Zheng S, Li R, Zhang D (2007) J Chromatogr B 850:24–30CrossRefGoogle Scholar
  25. 25.
    Schweitz L, Andersson LI, Nilsson S (1997) J Chromatogr A 792:401–409CrossRefGoogle Scholar
  26. 26.
    Theodoridis G, Konsta G, Bagia C (2004) J Chromatogr B 804:43–51CrossRefGoogle Scholar
  27. 27.
    Baggiani C, Giovannoli C, Anfossi L, Tozzi C (2001) J Chromatogr A 938:35–44CrossRefGoogle Scholar
  28. 28.
    Andersson LI, Nicholls IA, Mosbach K (1996) Adv Mol Cell Biol 651–670Google Scholar
  29. 29.
    Feldman HA (1972) Anal Biochem 48:317–338CrossRefGoogle Scholar
  30. 30.
    Rosenthal H (1967) Anal Biochem 20:525–532CrossRefGoogle Scholar
  31. 31.
    Nörby JG, Ottolenghi P, Jensen J (1980) Anal Biochem 102:318–320CrossRefGoogle Scholar
  32. 32.
    Zhou J, He X, Li Y (1999) Anal Chim Acta 394:353–359CrossRefGoogle Scholar
  33. 33.
    Xia Y, McGuffey JE, Bhattacharyya S, Sellergren B, Yilmaz E, Wang L, Bernert JT (2005) Anal Chem 77:7639–7645CrossRefGoogle Scholar
  34. 34.
    Sellergren B, Andersson LI (2000) Methods 22:92–106CrossRefGoogle Scholar
  35. 35.
    Caro E, Marcé RM, Cormack PAG, Sherrington DC, Borrull F (2005) Anal Chim Acta 552:81–86CrossRefGoogle Scholar
  36. 36.
    Caro E, Marcé RM, Cormack PAG, Sherrington DC, Borrull F (2006) J Sep Sci 29:1230–1236CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Suquan Song
    • 1
  • Aibo Wu
    • 1
  • Xizhi Shi
    • 1
  • Rongxiu Li
    • 1
  • Zhixin Lin
    • 1
  • Dabing Zhang
    • 1
  1. 1.Bor Luh Food Safety Center, Key Laboratory of Microbial Metabolism, Ministry of Education, College of Life Science and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations