Analytical and Bioanalytical Chemistry

, Volume 391, Issue 1, pp 33–57 | Cite as

Characterisation of historical organic dyestuffs by liquid chromatography–mass spectrometry

  • Erwin RosenbergEmail author


This review discusses the characterisation of natural organic dyestuffs of historical interest by liquid chromatography–mass spectrometry. The structures of the most important natural organic dyestuffs traditionally used are presented and discussed from the perspective of their analytical chemical determination. The practical aspects of the determination of this inhomogeneous range of compounds with different structures, such as anthraquinones, flavonoids, indigoids or tannins, are discussed with their implications for sample preparation, liquid chromatographic separation and mass spectrometric detection. The particular focus of this review is the discussion of the mass spectral fragmentation patterns of the different classes of natural organic dyestuffs, which in the ideal case allow the identification of the dyestuff actually used, and thereby provide a key to the better characterisation and understanding of historical objects dyed with natural organic dyestuffs.


LC-MS allows characterisation of natural dyestuff constituents: the MS spectrum of alizarin is superimposed over a photo of a textile coloured using this red dye


Historical dyestuffs Liquid chromatography–mass spectrometry Flavonoids Anthraquinoides Indigoids Tannins 



atmospheric pressure chemical ionisation


atmospheric pressure photoionisation


capillary electrophoresis


capillary electrochromatography


collision-induced dissociation


diode array detection


electrospray ionisation


fast atom bombardment


fluorescence detection


gas chromatography–mass spectrometry


high-performance liquid chromatography


ion cyclotron resonance–Fourier transform mass spectrometry


ion trap–time-of-flight mass spectrometry


liquid chromatography–mass spectrometry


microwave-assisted extraction


quadrupole–time-of-flight MS


scanning electron microscopy–energy dispersive spectroscopy


sector field mass spectrometer


selected ion monitoring (MS)


selected reaction monitoring mode (MS)


thin-layer chromatography


time-of-flight mass spectrometer


ultrasonically assisted extraction






x-ray fluorscence


  1. 1.
    Hofenk-de Graaff JH (2004) The colourful past: origins, chemistry and identification of natural dyestuffs. Archetype, LondonGoogle Scholar
  2. 2.
    Ferreira ESB, Hulme AN, McNab H, Quye A (2004) Chem Soc Rev 33:329–336Google Scholar
  3. 3.
    Cardon D (2007) Natural dyes - sources, tradition, technology, science. Archetype, LondonGoogle Scholar
  4. 4.
    Miliani C, Rosi F, Burnstock A, Brunetti BG, Sgamellotti A (2007) Appl Phys A 89:849–856Google Scholar
  5. 5.
    Clementi C, Miliani C, Romani A, Favaro G (2006) Spectrochim Acta B 64:906–912Google Scholar
  6. 6.
    Wetzel DL, LeVine SM (1999) Science 285:1224–1225Google Scholar
  7. 7.
    Vandenabeele P, Weis TL, Grant ER, Moens LJ (2004) Anal Bioanal Chem 379:137–142Google Scholar
  8. 8.
    Castro K, Pérez-Alonso M, Rodríguez-Laso M-D, Etxebarria N, Madariaga JM (2007) Anal Bioanal Chem 387:847–860Google Scholar
  9. 9.
    Verhecken A, Mortsel B (2005) Dyes History Archaeol 20:1–22Google Scholar
  10. 10.
    Wouters J (1985) Stud Conserv 30:119–128Google Scholar
  11. 11.
    Niessen WMA (2003) J Chromatogr A 1000:413–436Google Scholar
  12. 12.
    Tiller PR, Romanyshyn LA, Neue UD (2003) Anal Bioanal Chem 377:788–802Google Scholar
  13. 13.
    Reemtsma T (2001) Trends Anal Chem 20:500–517Google Scholar
  14. 14.
    Careri M, Mangia A, Musci M (1998) J Chromatogr A 794:263–297Google Scholar
  15. 15.
    Sleno L, Volmer DA (2004) J Mass Spectrom 39:1091–1112Google Scholar
  16. 16.
    Zadrona I, Polec-Pawlak K, Guch I, Ackacha MA, Mojski M, Witowska-Jarosz J, Jarosz M (2003) J Sep Sci 26:996–1004Google Scholar
  17. 17.
    Schweppe H (1993) Handbuch der Naturfarbstoffe. Nikol, HamburgGoogle Scholar
  18. 18.
    Trojanowicz M, Orska Gawryś J, Surowiec I, Szostek B, Urbaniak-Walczak K, Kehl J, Wróbel M (2004) Stud Conserv 49:115–130Google Scholar
  19. 19.
    van Bommel M, Geldof M, Hendriks E (2005) Art Matters 3:111–137Google Scholar
  20. 20.
    Joosten I, van Bommel MR, Hofman-de Keijzer R, Reschreiter H (2006) Microchim Acta 155:169–174Google Scholar
  21. 21.
    Hochleitner B, Desnica V, Mantler M, Schreiner M (2003) Spectrochim Acta B 58:641–649Google Scholar
  22. 22.
    Lennard F, Hayward M (eds) (2005) Tapestry conservation: principles and practice. Butterworth-Heinemann, London.Google Scholar
  23. 23.
    Balfour-Paul J (1998) Indigo. British Museum, LondonGoogle Scholar
  24. 24.
    Baeyer A, Drewson V (1882) Ber Dtsch Chem Ges 14:2856–2864Google Scholar
  25. 25.
    Haude ME (1998) J Am Chem Inst Art Conserv 37:240–270Google Scholar
  26. 26.
    Cooksey CJ (2001) Molecules 6:736–769CrossRefGoogle Scholar
  27. 27.
    Fouquet H, Bielig H-J (1971) Angew Chem Int Ed Engl 10:816–817Google Scholar
  28. 28.
    Elsner O (1991) Dyes Hist Archaeol 10:11–16Google Scholar
  29. 29.
    Wouters J, Verhecken A (1991) Dryers Colour 107:266–269Google Scholar
  30. 30.
    Ziderman I (2007) Paper presented at Dyes in History and Archaeology 26 (DHA 26), Vienna, Austria, 8–10 Nov 2007Google Scholar
  31. 31.
    McGovern PE, Michel RH (1990) Acc Chem Res 23:152–158Google Scholar
  32. 32.
    Sato M, Sasaki Y (2003) Dyes Hist Archaeol 19:19–23Google Scholar
  33. 33.
    Wouters J, Verhecken A (1989) Stud Conserv 34:189–200Google Scholar
  34. 34.
    Derksen GCH, Van Beek TA (2002) Stud Natural Prod Chem 26:629–684Google Scholar
  35. 35.
    Doğan Y, Başlar S, Hüseyin Mert H, Ay G (2003) Econ Bot 57:442–453Google Scholar
  36. 36.
    Nowik W, Desposiers S, Surowiecz, Trojanowicz M (2005) Archaeometry 47:835–848Google Scholar
  37. 37.
    Wouters J (2001) Dyes Hist Archaeol 16/17:145–157Google Scholar
  38. 38.
    Fieser LF (1930) J Chem Educ 7:2609–2633CrossRefGoogle Scholar
  39. 39.
    Burnett AR, Thomson RH (1968) J Chem Soc C 854–857Google Scholar
  40. 40.
    Nowik W (2001) Dyes Hist Archaeol (2001) 16/17:129–144Google Scholar
  41. 41.
    Edwards HGM, de Oliveira LFC, Nesbitt M (2003) Analyst 128:82–87Google Scholar
  42. 42.
    Takahashi Y, Miyasaka N, Tasaka S, Miura I, Urano S, Ikura M, Hikichi K, Matsumoto T, Wada M (1982) Tetrahedron Lett 23:5163–5166Google Scholar
  43. 43.
    Takahashi Y, Saito K, Yanagiya M, Ikura M, Hikichi K, Matsumoto T, Wada M (1984) Tetrahedron Lett 25:2471–2474Google Scholar
  44. 44.
    Cardon D (1994) Dyes Hist Archaeol 13:59–73Google Scholar
  45. 45.
    Knecht E, Rawson C, Loewenthal R (1933) A manual of dyeing, 9th edn. Griffin, LondonGoogle Scholar
  46. 46.
    Kaiser R (1993) Angew Bot 67:128–131Google Scholar
  47. 47.
    Karapanagiotis I, Lakka A, Valianou L, Chryssoulakis Y (2007) Microchim Acta. DOI  10.1007/s00604-007-0774-4
  48. 48.
    Purinton N, Watters M (1991) J Am Inst Art Conserv 30:125–144Google Scholar
  49. 49.
    Novotná P, Pacáková V, Bosáková Z, Štulik K (1999) J Chromatogr A 863:235–241Google Scholar
  50. 50.
    Surowiec I, Szostek B, Trojanowicz M (2007) J Sep Sci 30:2070–2079Google Scholar
  51. 51.
    Koestler RJ, Sheryll R, Indictor N (1985) Stud Conserv 30:58–62Google Scholar
  52. 52.
    Bitossi G, Giorgi R, Mauro M, Salvadori B, Dei L (2005) Appl Spectrosc Revs 40:187–228Google Scholar
  53. 53.
    Gilbert KG, Cooke DT (2001) Plant Growth Regul 34:57–69Google Scholar
  54. 54.
    Kaiser R (1993) Angew Bot 67:128–131Google Scholar
  55. 55.
    Crozier A, Jensen E, Lean MEJ, McDonald MS (1997) J Chromatogr A 761:315–321Google Scholar
  56. 56.
    Surowiec I, Quye A, Trojanowicz M (2006) J Chromatogr A 1112:209–217Google Scholar
  57. 57.
    Dabiri M, Salimi S, Ghassempour A, Rassouli A, Taleb M (2005) J Sep Sci 28:387–396Google Scholar
  58. 58.
    Sanyova J, Reisse J (2006) J Cult Herit 7:229–235Google Scholar
  59. 59.
    Zhang X, Laursen RA (2005) Anal Chem 77:2022–2025Google Scholar
  60. 60.
    Laursen R (2007) Paper presented at Dyes in History and Archaeology 26 (DHA26), Vienna, Autria, 8–10 Nov 2007Google Scholar
  61. 61.
    Karapanagiotis I, de Villemereuil V, Magiatis P, Polychronopoulos T, Vougougiannopoulou K, Skaltsounis A-L (2006) J Liq Chromatogr 29:1491–1502Google Scholar
  62. 62.
    Pawlak K, Puchalska M, Miszczak A, Rosłoniec E, Jarosz M (2006) J Mass Spectrom 41:613–622Google Scholar
  63. 63.
    Surowiec I, Nowik W, Trojanowicz M (2004) J Sep Sci 27:209–216Google Scholar
  64. 64.
    Surowiec I, Szostek B, Trojanowicz M (2007) J Sep Sci 30:2070–2079Google Scholar
  65. 65.
    Zhang X, Boytner R, Cabrera J-L, Laursen R (2007) Anal Chem 79:1575–1582Google Scholar
  66. 66.
    Guiochon G (2007) J Chromatogr A 1168:101–168Google Scholar
  67. 67.
    Halpine SM (1996) Stud Conserv 41:76–94Google Scholar
  68. 68.
    Orska-Gawryś J, Surowiec I, Kehl J, Rejniak H, Urbaniak-Walczak K, Trojanowicz M (2003) J Chromatogr A 989:239–248Google Scholar
  69. 69.
    Karapanagiotis I (2006) Am Lab 38:36–40Google Scholar
  70. 70.
    Goodner KL (2008) LWT - Food Sci Technol 41:951–958Google Scholar
  71. 71.
    Reijenga JC (2000) J Chromatogr A 903:41–48Google Scholar
  72. 72.
    Wouters J (2005) Dyes Hist Archaeol 20:23–29Google Scholar
  73. 73.
    Verhecken A, Mortsel B (2005) Dyes Hist Archaeol 20:1–22Google Scholar
  74. 74.
    Yamaoka R, Shibayama N, Yamada T, Sato M (1989) Shitsuryo Bunseki 37:249–253Google Scholar
  75. 75.
    Yinon J, Saar J (1991) J Chromatogr A 586:73–84Google Scholar
  76. 76.
    Hiserodt R, Hartmann TG, Chi-Tang H, Rosen RT (1996) J Chromatogr A 740:51–63Google Scholar
  77. 77.
    Szostek B, Orska-Gawrys J, Surowiec I, Trojanowicz M (2003) J Chromatogr A 1012:179–192Google Scholar
  78. 78.
    Karapanagiotis I, Chryssoulakis Y (2006) Ann Chim 96:75–84Google Scholar
  79. 79.
    Rafaëlly L, Héron S, Nowik W, Tchapla A (2008) Dyes Pigm 77:191–203Google Scholar
  80. 80.
    Puchalska M, Połeć-Pawlak K, Zadrozna I, Hryszko H, Jarosz M (2004) J Mass Spectrom 39:1441–1449Google Scholar
  81. 81.
    Derksen GCH, Niederländer HAG, van Beek TA (2002) J Chrom A 978:119–127Google Scholar
  82. 82.
    Hulme AN, McNab H, Peggie DA, Quye A (2005) Phytochem 66:2766–2770Google Scholar
  83. 83.
    Zhang X, Good I, Laursen R (2007) J Archaeol Sci. DOI  10.1016/j.jas.2007.08.001
  84. 84.
    Niessen WMA (2003) J Chromatogr A 1000:413–436Google Scholar
  85. 85.
    Niessen WMA (1999) Liquid chromatography-mass spectrometry, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  86. 86.
    Herderich M, Richling E, Roscher R, Schneider C, Schwab W, Humpf H-U, Schreier P (1997) Chromatographia 45:127–132Google Scholar
  87. 87.
    Bos SJ, van Leeuwen SM, Karst U (2006) Anal Bioanal Chem 384:85–99Google Scholar
  88. 88.
    White R, Kirby J, in: Kirby J, ed. (1999) Dyes History Archaeol 16/17:169–174Google Scholar
  89. 89.
    Mueller SO, Schmitt M, Dekant W, Stopper H, Schlatter J, Schreier P, Lutz WK (1999) Food Chem Toxicol 37:481–491Google Scholar
  90. 90.
    Liau B-C, Jong T-T, Lee M-R, Chen S-S (2007) J Pharmaceut Biomed Anal 43:346–351Google Scholar
  91. 91.
    Gilbert KG, Hill DJ, Crespo C, Mas A, Lewis M, Rudolph B, Cooke DT (2000) Phytochem Anal 11:18–20Google Scholar
  92. 92.
    Cuyckens F, Claeys M (2004) J Mass Spectrom 39: 1–15 and Errata: Cuyckens F, Claeys M (2004) J Mass Spectrom 39:461Google Scholar
  93. 93.
    Wu W, Yan C, Li L, Liu Z, Liu S (2004) J Chromatogr A 1047:213–220Google Scholar
  94. 94.
    Stobiecki M (2000) Phytochem 54:237–256Google Scholar
  95. 95.
    Careri M, Elviri L, Mangia A (1999) Rapid Commun Mass Spectrom 13:2399–2405Google Scholar
  96. 96.
    Häkkinen S, Auriola S (1998) J Chrom A 829:91–100Google Scholar
  97. 97.
    Stobiecki M, Malosse C, Kerhoas L, Wojlaszek P, Einhorn J (1999) Phytochem Anal 10:198–207Google Scholar
  98. 98.
    Ma YL, Li QM, Van den Heuvel H, Claeys M (1997) Rapid Commun Mass Spectrom 11:1357–1364Google Scholar
  99. 99.
    Ma Y-L, Van den Heuvel H, Claeys M (1999) Rapid Commun Mass Spectrom 13:1932–1942Google Scholar
  100. 100.
    Ma Y-L, Cuyckens F, Van den Heuvel H, Claeys M (2001) Phytochem Anal 12:159–165Google Scholar
  101. 101.
    Domon B, Costello CE (1988) Glycoconj J 5:397–409Google Scholar
  102. 102.
    Li QM, Claeys M (1994) Biol Mass Spectrom 23:406–416Google Scholar
  103. 103.
    Li QM, Van den Heuvel H, Dillen L, Claeys M (1992) Biol Mass Spectrom 21:213–221Google Scholar
  104. 104.
    Quideau S, Feldman KS (1966) Chem Rev 96:475–503Google Scholar
  105. 105.
    Hardouin J, Lange CM (2005) Curr Org Chem 9:317–324Google Scholar
  106. 106.
    Mueller-Harvey I (2001) Anim Feed Sci Technol 91:3–20Google Scholar
  107. 107.
    Cai Y-Z, Xing J, Sun M, Zhan Z-Q, Corke H (2005) J Agric Food Chem 53:9940–9948Google Scholar
  108. 108.
    Ferreira ESB, Quye A, Hulme AN, McNab H (2003) Dyes Histor Anal 19:13–18Google Scholar
  109. 109.
    Dresen S, Kempf J, Weinmann W (2006) Forensic Sci Int 161:86–91Google Scholar
  110. 110.
    Pihlainen K, Sippola E, Kostiainen R (2003) J Chromatogr A 994:93–102Google Scholar
  111. 111.
    Marquet P, Venisse N, Lacassie É, Lachâtre G (2000) Analusis 28:925–934Google Scholar
  112. 112.
    Baumann C, Cintora MA, Eichler M, Lifante E, Cooke M, Przyborowska A, Halket JM (2000) Rapid Comm Mass Spectrom 14:349–356Google Scholar
  113. 113.
    Jong SL, Dong HK, Liu K-H, Tae KO, Lee CH (2005) Rapid Comm Mass Spectrom 19:3539–3548Google Scholar
  114. 114.
    Josephs JL, Sanders M (2004) Rapid Comm Mass Spectrom 18:743–759Google Scholar
  115. 115.
    Bristow AWT, Nichols WF, Webb KS, Conway B (2002) Rapid Comm Mass Spectrom 16:2374–2386Google Scholar
  116. 116.
    Weinmann W, Stoertzel M, Vogt S, Wendt J (2001) J Chromatogr A 926:199–209Google Scholar
  117. 117.
    Weinmann W, Stoertzel M, Vogt S, Svoboda M, Schreiber A (2001) J Mass Spectrom 36:1013–1023Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute of Chemical Technologies and AnalyticsVienna University of TechnologyViennaAustria

Personalised recommendations