Advertisement

Analytical and Bioanalytical Chemistry

, Volume 390, Issue 8, pp 2081–2088 | Cite as

Molecular recognition of endocrine disruptors by synthetic and natural 17β-estradiol receptors: a comparative study

  • Bernadette Tse Sum Bui
  • Anne-Sophie Belmont
  • Hilda WittersEmail author
  • Karsten HauptEmail author
Original Paper

Abstract

A β-estradiol receptor binding mimic was synthesised using molecular imprinting. Bulk polymers and spherical polymer nanoparticles based on methacrylic acid and ethylene glycol dimethacrylate as the functional monomer and crosslinker, respectively, were prepared in acetonitrile. The selectivity was evaluated by radioligand binding assays. The imprinted polymers were very specific to β-estradiol since the control polymers bound virtually none of the radioligand. The bulk polymer was then employed to screen endocrine disrupting chemicals. Structurally related steroids like α-estradiol, estrone and ethynylestradiol showed, respectively, 14.0, 5.0 and 0.7% of relative binding to the β-estradiol polymer, whereas most unrelated chemicals did not bind at all. These results are compared to those obtained with a bioassay using stably transfected yeast cells in culture bearing the human estrogen receptor. The receptor was activated by several estrogen-like chemicals and to a lesser extent by some structurally related chemicals.

Figure

A molecularly imprinted polymer that was a synthetic receptor for beta-estradiol was used for the screening of endocrine disrupting chemicals that are structurally related or unrelated to beta-estradiol. The results were compared with the recognition of the compounds by the biological estrogen receptor expressed in yeast cells. Related steroids like alpha-estradiol, estrone and ethynylestradiol showed significant binding to the beta-estradiol imprinted polymer, whereas most unrelated chemicals did not bind. The biological receptor was activated by several estrogen-like chemicals, and to a lesser extent by some structurally related chemicals

Keywords

Molecular imprinting Synthetic receptors Endocrine disruptors Bioassay Screening β-estradiol 

Notes

Acknowledgments

The authors gratefully acknowledge financial support from the European Union (MENDOS project, grant n° QLK4-CT2002-02323). The technical assistance by Mrs. C. Vangenechten who performed the yeast assay is acknowledged.

References

  1. 1.
    Damstra T, Barlow S, Bergman A, Kavlock R, Van der Kraak G (2002) International Programme on Chemical Safety: global assessment of the state-of-the-science of endocrine disruptors (WHO/PCS/EDC/02.2). World Health Organization, GenevaGoogle Scholar
  2. 2.
    Jobling S, Williams R, Johnson A, Taylor A, Gross-Sorokin M, Nolan M, Tyler CR, van Aerle R, Santos E, Brighty G (2006) Environ Health Persp 114:32–39CrossRefGoogle Scholar
  3. 3.
    Van den Belt K, Wester PW, Van de Ven L, Verheyen R, Witters H (2002) Environ Toxicol Chem 21:767–775CrossRefGoogle Scholar
  4. 4.
    Maffini M, Rubin B, Sonnenschein C, Soto A (2006) Mol Cell Endocrinol 254–255:179–186CrossRefGoogle Scholar
  5. 5.
    Vethaak AD, Lahr J, Schrap SM, Belfroid AC, Rijs GBJ, Gerritsen A, de Boer J, Bulder AS, Grinwis GCM, Kuiper RV, Legler J, Murk TAJ, Peijnenburg W, Verhaar HJM, de Voogt P (2005) Chemosphere 59:511–524CrossRefGoogle Scholar
  6. 6.
    Witters H, Berckmans P, Vangenechten C (2001) Water Sci Technol 43:117–123Google Scholar
  7. 7.
    Rodriguez-Mozaz S, Marco M-P, Lopez de Alda MJ, Barceló D (2004) Anal Bioanal Chem 378:588–598CrossRefGoogle Scholar
  8. 8.
    Kwon J, Katz LE, Liljestrand HM (2007) Chemosphere 69:1025–1031CrossRefGoogle Scholar
  9. 9.
    Blair RM, Fang H, Branham WS, Hass BS, Dial SL, Moland CL, Tong W, Shi L, Perkins R, Sheehan DM (2000) Toxicol Sci 54:138–153CrossRefGoogle Scholar
  10. 10.
    Berckmans P, Leppens H, Vangenechten C, Witters H (2007) Toxicol In Vitro 21:1262–1267CrossRefGoogle Scholar
  11. 11.
    Hareng L, Pellizzer C, Bremer S, Schwarz M, Hartung T (2005) Reprod Toxicol 20:441–452CrossRefGoogle Scholar
  12. 12.
    Pichon V, Haupt K (2006) J Liq Chromatogr R T 29:989–1023CrossRefGoogle Scholar
  13. 13.
    Ramström O, Ye L, Krook M, Mosbach K (1998) Anal Commun 35:9–11CrossRefGoogle Scholar
  14. 14.
    Ye L, Yu Y, Mosbach K (2001) Analyst 126:760–765CrossRefGoogle Scholar
  15. 15.
    Cheong SH, Rachkov AE, Park JK, Yano K, Karube I (1998) J Polym Sci Polym Chem 36:1725–1732Google Scholar
  16. 16.
    Routledge EJ, Sumpter JP (1996) Environ Toxicol Chem 15:241–248CrossRefGoogle Scholar
  17. 17.
    Meng Z, Chen W, Mulchandani A (2005) Environ Sci Technol 39:8958–8962CrossRefGoogle Scholar
  18. 18.
    Le Noir M, Plieva F, Hey T, Guieysse B, Mattiasson B (2007) J Chromatogr A 1154:158–164CrossRefGoogle Scholar
  19. 19.
    Wei S, Molinelli A, Mizaikoff B (2006) Biosens Bioelectron 21:1943–1951CrossRefGoogle Scholar
  20. 20.
    Ye L, Weiss R, Mosbach K (2000) Macromolecules 33:8239–8245CrossRefGoogle Scholar
  21. 21.
    Sanbe H, Haginaka J (2003) J Pharm Biomed Anal 30:1835–1844CrossRefGoogle Scholar
  22. 22.
    Andersson LI (1996) Anal Chem 68:111–117CrossRefGoogle Scholar
  23. 23.
    Yu C, Ramström O, Mosbach K (1997) Anal Lett 30:2123–2140Google Scholar
  24. 24.
    Hishiya T, Shibata M, Kakazu M, Asanuma H, Komiyama M (1999) Macromolecules 32:2265–2269CrossRefGoogle Scholar
  25. 25.
    Idziak I, Benrebouh A (2000) Analyst 125:1415–1417CrossRefGoogle Scholar
  26. 26.
    Ramström O, Ye L, Mosbach K (1996) Chem Biol 3:471–477CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Compiègne University of Technology, UMR CNRS 6022Compiégne cedexFrance
  2. 2.Flemish Institute for Technological Research—VITO nv, Expertise Center Environmental ToxicologyMolBelgium
  3. 3.Laboratoire des acides nucléiques, CEAGrenobleFrance

Personalised recommendations