Advertisement

Analytical and Bioanalytical Chemistry

, Volume 391, Issue 4, pp 1343–1350 | Cite as

Investigating morphological changes in treated vs. untreated stone building materials by x-ray micro-CT

  • Simone Bugani
  • Mara CamaitiEmail author
  • Luciano Morselli
  • Elke Van de Casteele
  • Koen Janssens
Original Paper

Abstract

Calcareous stones have been largely used to build historical buildings. Among these, the calcarenites are usually characterized by a high content of calcite and a high open porosity, which make them very sensitive to the weathering caused by physical and chemical agents. In order to prevent their deterioration and to retard their decay, different protective products—mainly polymers—are applied on the stone artefact surfaces. In this work we apply the methodology tested in a preliminary study to investigate the morphological changes of the internal structure of a biocalcarenite (Lecce stone) by micro x-ray computed tomography (μ-CT). The porosity and other morphological parameters of the rock before and after the conservation treatment were calculated on a significant number of samples. The Student’s t test was applied for statistical comparison. The results reveal that the treatment with Paraloid B72 (PB 72) is homogenously distributed and causes small changes to the natural properties of the rock, whereas the application of a fluoroelastomer (NH) causes an appreciable decrease in porosity and variation in terms of wall thickness distribution, probably resulting from its inhomogeneous distribution.

Figure

Porosity and other morphological parameters of Lecce stone were investigated by μ-CT: the effect of conservation treatment with fluoroelastomer on wall thickness distribution is illustrated

Keywords

Cultural heritage Stone conservation Calcarenite Porosity Morphological parameters Protective treatments μ-CT 

Notes

Acknowledgements

The authors wish to thank the ATHENA project (Contract MEST-CT 2004 – 504067) within Marie Curie Actions for funding part of Simone Bugani’s PhD project and Dr. Olivieri for linguistic consulting.

References

  1. 1.
    Rijniers LA, Pel L, Huinink HP, Kopinga K (2005) Magn Reson Imaging 23:273–276CrossRefGoogle Scholar
  2. 2.
    Sabbioni C (1995) Sci Total Environ 167:49–55CrossRefGoogle Scholar
  3. 3.
    Turkington AV, Martin E, Viles HA, Smith BJ (2003) Build Environ 38(9–10):1205–1216CrossRefGoogle Scholar
  4. 4.
    Beck K, Al-Mukhtar M, Rozenbaum O, Rautureau M (2003) Build Environ 38:1151–1162CrossRefGoogle Scholar
  5. 5.
    Camaiti M, Bugani S, Bernardi E, Morselli L, Matteini M (2007) Appl Geochem 22(6):1248–1254CrossRefGoogle Scholar
  6. 6.
    UNI 10859 (2000) Norma Italiana Beni Culturali, Materiali lapidei naturali e artificiali: determinazione dell’assorbimento d’acqua per capillaritàGoogle Scholar
  7. 7.
    DOC NORMAL 21/85 (1982) Materiali lapidei: permeabilità al vapor d’acqua. Ed. CNR-ICR Comas Grafica, RomeGoogle Scholar
  8. 8.
    DOC NORMAL 33/89 (1991) Misura dell’angolo di contatto. CNR-ICR Comas Grafica, RomeGoogle Scholar
  9. 9.
    Casadio F, Toniolo L (2004) JAIC 43(1):3–21Google Scholar
  10. 10.
    Ashurst J, Dimes FG (1990) Conservation of building and decorative stone. Butterworth-Heinemann, LondonGoogle Scholar
  11. 11.
    Bugani S, Camaiti M, Morselli L, Van de Casteele E, Janssens K (2007) X-Ray Spectrom 36(5):316–320CrossRefGoogle Scholar
  12. 12.
    Borgia GC, Camaiti M, Cerri F, Fantazzini P, Piacenti F (2003) Stud Conserv 48(4):217–226Google Scholar
  13. 13.
    Peele AG, Quiney HM, Dhal BB, Mancuso AP, Arhatari B, Nugent KA (2006) Radiat Phys Chem 75:2067–2071CrossRefGoogle Scholar
  14. 14.
    Mees F, Swennen R, Van Geet M, Jacobs P (2003) Applications of x-ray computed tomography in geoscience. In: Mees F, Swennen R, Van Geet M, Jacobs P (eds) Applications of x-ray computed tomography in geoscience. Geological Society, London, pp 1–6Google Scholar
  15. 15.
    Jones KW, Feng H, Lindquist WB, Adler PM, Thovert JF, Vekemans B, Vincze L, Szaloki I, Van Grieken R, Adams F, Riekel C (2003) Study of microgeometry of porous materials using synchrotron computed microtomography. In: Mees F, Swennen R, Van Geet M, Jacobs P (eds) Applications of x-ray computed tomography in geoscience. Geological Society, London, pp 39–49Google Scholar
  16. 16.
    Brunetti A, Princi E, Vicini S, Pincin S, Bidali S, Mariani A (2004) Nucl Instrum Meth B 222:235–241CrossRefGoogle Scholar
  17. 17.
    Cnudde V, Cnudde JP, Dupuis C, Jacobs PJS (2004) Mater Charact 53:259–271CrossRefGoogle Scholar
  18. 18.
    Cnudde V and Jacobs PJS (2004) Environ Geol 46:477–485 (9–10):1205–1216Google Scholar
  19. 19.
    Roby TC (1996) In: Riederer J (ed) Proceedings of the 8th international congress on the deterioration and conservation of stone, Berlin, 30 September–4 October 1996. ISBN 3000007792, pp 1015–1028Google Scholar
  20. 20.
    Feldkamp LA, Davis LC, Kress JW (1984) J Opt Soc Am 1(6):612–619CrossRefGoogle Scholar
  21. 21.
    Miller JN, Miller JC (2005) Statistics and chemometrics for analytical Chemistry, 5th edn. Pearson Education, New York, ISBN 0131291920Google Scholar
  22. 22.
    Russ JC (2006) The image processing handbook, 5th edn. CRC, Boca Raton, ISBN 0849372542Google Scholar
  23. 23.
    Cnudde V, Jacobs PJS (2004) Env Geol 46:477–485CrossRefGoogle Scholar
  24. 24.
    Hilderbrand T, Ruegsegger P (1997) J Microsc 185:67–75CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Simone Bugani
    • 1
  • Mara Camaiti
    • 2
    Email author
  • Luciano Morselli
    • 1
  • Elke Van de Casteele
    • 3
  • Koen Janssens
    • 4
  1. 1.Department of Industrial Chemistry and MaterialsUniversity of BolognaBolognaItaly
  2. 2.Institute for Conservation and Enhancement of Cultural HeritageNational Research CouncilSesto Fiorentino (Fi)Italy
  3. 3.SkyScan N.V.KontichBelgium
  4. 4.Department of ChemistryUniversity of AntwerpAntwerpBelgium

Personalised recommendations