Analytical and Bioanalytical Chemistry

, Volume 391, Issue 3, pp 735–744 | Cite as

Micelle-mediated extractions using nonionic surfactant mixtures and HPLC-UV to determine endocrine-disrupting phenols in seawaters

  • Jessica López-Darias
  • Verónica Pino
  • Juan H. Ayala
  • Venerando González
  • Ana M. Afonso
Original Paper


An environmentally friendly method to extract endocrine-disrupting phenols (EDPs) from seawaters was realized using nonionic surfactant mixtures and micelle-mediated extractions. The preconcentration step was achieved directly in the seawater matrix, and was followed by high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection without any clean-up steps to remove the surfactant mixture prior to injection. Various nonionic surfactant mixtures were used, and polyoxyethylene-10-laurylether (POLE) with polyoxyethylene-4-laurylether (Brij 30) was found to be the best to work with. Method optimization involved maximizing the preconcentration factor using the studied mixtures. The proposed method gave extraction recoveries ranging from 83.3 to 114.4% for an EDP spiking level of 46.7 μg L−1, and from 63.4 to 112.4% for a spiking level of 4.7 μg L−1 for EDPs studied in real seawater matrices, with relative standard deviations of <12.1%. The detection limits of the method varied from 0.18 μg L−1 for bisphenol A (BPA) to 1.17 μg L−1 for 4-cumylphenol (4-CP). The method was applied to seawaters from the Canary Islands with successful results.


Micelle-mediated extractions Cloud-point extraction Nonionic surfactant mixtures Seawater analysis Endocrine-disrupting phenols 



Jessica López-Darias would like to acknowledge the Servicio de Medio Ambiente de la Universidad de La Laguna (SEMALL) for a predoctoral fellowship. Verónica Pino would like to thank the Spanish Ministry of Education and Science (Spain) for the “Juan de la Cierva” contract with the University of La Laguna. The authors also thank the SEMALL for providing seawater samples.

Supplementary material

216_2008_1944_MOESM1_ESM.doc (44 kb)
ESM 1 (DOC 43.5 KB)


  1. 1.
    Rivas A, Fernández ME, Cerrillo I, Ibarluzea J, Olea-Serrano MF, Pedraza V, Olea N (2001) APMIS 109:185–197CrossRefGoogle Scholar
  2. 2.
    Gimeno S, Komen H, Venderbosch PWM, Bowmer T (1997) Environ Sci Technol 31:2884–2890CrossRefGoogle Scholar
  3. 3.
    DeRosa C, Richter P, Pohl H, Jones DE (1998) J Toxicol Environ Health Part B 1:3–26CrossRefGoogle Scholar
  4. 4.
    Baker VA (2001) Toxicol In Vitro 15:413–419CrossRefGoogle Scholar
  5. 5.
    Canesi L, Betti M, Lorusso LC, Ciacci C, Gallo G (2005) Aquat Toxicol 71:73–84CrossRefGoogle Scholar
  6. 6.
    Soto AM, Justicia H, Wray JW, Sonnenschein C (1991) Environ Health Perspect 92:167–173CrossRefGoogle Scholar
  7. 7.
    Krishnan AV, Stathis P, Permuth SF, Tokes L, Feldman D (1993) Endocrinology 132:2279–2286CrossRefGoogle Scholar
  8. 8.
    Daston GP, Cook JC, Kavlock RJ (2003) Toxicol Sci 74:245–252CrossRefGoogle Scholar
  9. 9.
    Birnbaum LS, Fenton SE (2003) Environ Health Perspect 111:389–394CrossRefGoogle Scholar
  10. 10.
    López-Roldan P, López de Alda MJ, Barceló D (2004) Anal Bioanal Chem 378:599–609CrossRefGoogle Scholar
  11. 11.
    Hernando MD, Mezcua M, Gómez MJ, Malato O, Agüera A, Fernández-Alba AR (2004) J Chromatogr A 1047:129–135CrossRefGoogle Scholar
  12. 12.
    Kawaguchi M, Sakui N, Okanouchi N, Ito R, Saito K, Nakazawa H (2005) J Chromatogr A 1062:23–29CrossRefGoogle Scholar
  13. 13.
    Brossa L, Marcé RM, Borrull F, Pocurull E (2002) J Chromatogr A 963:287–294CrossRefGoogle Scholar
  14. 14.
    Basheer C, Lee HK, Tan KS (2004) Mar Poll Bull 48:1161–1167CrossRefGoogle Scholar
  15. 15.
    Famiglini G, Palma P, Siviero A, Rezai MA, Cappiello A (2005) Anal Chem 77:7654–7661CrossRefGoogle Scholar
  16. 16.
    Liu R, Zhou JL, Wilding A (2004) J Chromatogr A 1022:179–189CrossRefGoogle Scholar
  17. 17.
    Patrolecco L, Capri S, De Angelis S, Polesello S, Valsecchi S (2004) J Chromatogr A 1022:1–7CrossRefGoogle Scholar
  18. 18.
    Delgado B, Pino V, Ayala JH, González V, Afonso AM (2004) Anal Chim Acta 518:165–172CrossRefGoogle Scholar
  19. 19.
    Quina FH, Hinze WL (1999) Ind Eng Chem Res 38:4150–4168Google Scholar
  20. 20.
    Paleologos EK, Giokas DL, Karayannis MI (2005) Trends Anal Chem 24:426–436CrossRefGoogle Scholar
  21. 21.
    Saitoh T, Matsudo T, Matsubara C (2000) J Chromatogr A 879:121–128CrossRefGoogle Scholar
  22. 22.
    Pino V, Ayala JH, Afonso AM, González V (2002) J Chromatogr A 949:291–299CrossRefGoogle Scholar
  23. 23.
    Padrón-Sanz C, Halko R, Sosa-Ferrera Z, Santana-Rodríguez JJ (2004) Anal Chim Acta 524:265–270CrossRefGoogle Scholar
  24. 24.
    Inoue T, Ohmura H, Murata D (2003) J Colloid Interf Sci 258:374–382CrossRefGoogle Scholar
  25. 25.
    Wang L, Cai YQ, He B, Yuan CG, Shen DZ, Shao J, Jiang GB (2006) Talanta 70:47–51CrossRefGoogle Scholar
  26. 26.
    APHA, AWWA, WPCF (1992) Métodos normalizados de análisis de aguas potables y residuales. Díaz de Santos, Madrid, p 8Google Scholar
  27. 27.
    Hinze WL, Pramauro E (1993) Crit Rev Anal Chem 24:133–177CrossRefGoogle Scholar
  28. 28.
    Marszall L (1990) Langmuir 6:347–350CrossRefGoogle Scholar
  29. 29.
    García-Pinto C, Pérez-Pavón JL, Moreno-Cordero B (1994) Anal Chem 66:874–881CrossRefGoogle Scholar
  30. 30.
    Silva MF, Fernández L, Olsina RA, Stacchiola D (1997) Anal Chim Acta 342:229–238CrossRefGoogle Scholar
  31. 31.
    Fan Y, Zhang M, Da SL, Feng YQ (2005) Analyst 130:1065–1069CrossRefGoogle Scholar
  32. 32.
    Yang L, Luan T, Lan C (2006) J Chromatogr A 1104:23–32CrossRefGoogle Scholar
  33. 33.
    Gatidou G, Thomaidis NS, Stasinakis AS, Lekkas TD (2007) J Chromatogr A 1138:32–41CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jessica López-Darias
    • 1
  • Verónica Pino
    • 1
  • Juan H. Ayala
    • 1
  • Venerando González
    • 1
  • Ana M. Afonso
    • 1
  1. 1.Department of Analytical Chemistry, Nutrition and Food ScienceUniversity of La LagunaLa LagunaSpain

Personalised recommendations