Analytical and Bioanalytical Chemistry

, Volume 391, Issue 1, pp 289–297 | Cite as

Automated normal phase nano high performance liquid chromatography/matrix assisted laser desorption/ionization mass spectrometry for analysis of neutral and acidic glycosphingolipids

Original Paper

Abstract

The coupling of nano high-performance liquid chromatography (nanoHPLC) with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) via an automatic spotting roboter was developed and adapted for the first time for the analysis of complex mixtures of glycosphingolipids (GSLs). The 2,5-dihydroxybenzoic acid and 6-azo-2-thiothymine matrix systems were adjusted to concurrently meet the requirements for reproducible and homogeneous crystal formation with the liquid chromatography (LC) eluent under the variable LC solvent composition over the course gradient and high ionization efficiency of the GSL species, without the need for recrystallization. Precise adjustment of the automatic spotting parameters in terms of matrix flow rate, on-tip collection time of the matrix/LC eluent solution and the matrix spotting mode, i.e., continuous and discontinuous, was accomplished to collect individually nanoHPLC-separated species within distinct spots and consequently recover by MALDI MS screening all major and minor GSL species in the mixtures. The nanoHPLC/MALDI MS coupling protocol was developed and applied to a mixture of neutral GSLs purified from human erythrocytes and a monosialoganglioside mixture expressed by the murine MDAY-D2 cell line. Additionally, on-line nanoHPLC/MALDI doping with lithium cations of individually separated neutral GSLs was introduced to enhance data interpretation of the GSL MS pattern, while preserving the same level of information and ultimately to enhance structural assignment of components of interest. The method is demonstrated to be highly sensitive, reaching the low femtomole level of detection of individual GSL species and is highlighted as a versatile analytical tool for glycolipidomic studies.

Figure

Automatic LC/MALDI MS profiling of glycosphingolipids

Keywords

Nano high-performance liquid chromatography Matrix assisted laser desorption/ionization mass spectrometry Glycosphingolipids Automatization 

Notes

Acknowledgement

This project was supported by the RP6 European Union GLYFDIS project no. LSHB-CT-2006-037661.

References

  1. 1.
    Hakomori S (1990) J Biol Chem 265:18713–18716Google Scholar
  2. 2.
    Ledeen RW, Wu G (2002) Neurochem Res 27:637–647CrossRefGoogle Scholar
  3. 3.
    Metelmann W, Vukelić Z, Peter-Katalinić J (2001) J Mass Spectrom 36:21–29CrossRefGoogle Scholar
  4. 4.
    Peter-Katalinić J (1994) Mass Spectrom Rev 13:77–98CrossRefGoogle Scholar
  5. 5.
    Müthing J, Neumann U (1993) Biomed Chromatogr 7:158–161CrossRefGoogle Scholar
  6. 6.
    Sommer U, Herscovitz H, Welty FK, Costello CE (2006) J Lipid Res 47:804–814CrossRefGoogle Scholar
  7. 7.
    Zamfir AD, Vukelić , Peter-Katalinić J (2002) Electrophoresis 23:2894–2903CrossRefGoogle Scholar
  8. 8.
    Gaskell SJ (1997) J Mass Spectrom 32:677–688CrossRefGoogle Scholar
  9. 9.
    Mehlis B, Kertscher U (1997) Anal Chim Acta 352:71–83CrossRefGoogle Scholar
  10. 10.
    Mirgorodskaya E, Braeuer C, Fucini P, Lehrach H, Gobom J (2005) Proteomics 5:399–408CrossRefGoogle Scholar
  11. 11.
    Mechref Y, Novotny MV (2006) J Chromatogr B 841:65–78CrossRefGoogle Scholar
  12. 12.
    Nair H, Hattan S, Juhasz P, Tomlinson A (2003) In: Proceedings of the 51st ASMS conference on mass spectrometry and allied topics, 8–12 June 2003, Montreal, CanadaGoogle Scholar
  13. 13.
    Medzihradszky KF, Campbell JM, Baldwin MA, Falick AM, Juhasz P, Vestal ML, Burlingame AL (2000) Anal Chem 72:552–558CrossRefGoogle Scholar
  14. 14.
    Suckau, D, Resemann A, Schuerenberg M, Hufnagel P, Franzen J, Holle A (2003) Anal Bioanal Chem 376:952–965CrossRefGoogle Scholar
  15. 15.
    Hattan SJ, Marchese J, Khainovski N, Martin S, Juhasz P (2005) J Proteome Res 4:1931–1941CrossRefGoogle Scholar
  16. 16.
    Lou X, Van Dongen JLJ, Janssen HM, Lange RFM (2002) J Chromatogr A 976:145–154CrossRefGoogle Scholar
  17. 17.
    Finke B, Mank M, Daniel H, Stahl B (2000) Anal Biochem 284:256–265CrossRefGoogle Scholar
  18. 18.
    Amini A, Dormady SJ, Riggs L, Regnier FE (2000) J Chromatogr A 894:345–355CrossRefGoogle Scholar
  19. 19.
    Mueller DR, Voshol H, Waldt A, Wiedmann B, Van Oostrum J (2007) Subcell Biochem 43:355–380Google Scholar
  20. 20.
    Sparbier K, Asperger A, Resemann A, Kessler I, Koch S, Wenzel T, Stein G, Vorwerg L, Suckau D, Kostrzewa M (2007) J Biomol Tech 18:252–258Google Scholar
  21. 21.
    Hattan SJ, Parker KC (2006) Anal Chem 78:7986–7996CrossRefGoogle Scholar
  22. 22.
    Perlman DH, Huang H, Dauly C, Costello CE, McComb ME (2007) Anal Chem 79:2058–2066CrossRefGoogle Scholar
  23. 23.
    Ledeen RW, Yu RK (1982) Methods Enzymol 83:139–191CrossRefGoogle Scholar
  24. 24.
    Müthing J, Egge H, Kniep B, Mühlradt PF (1987) Eur J Biochem 163:407–416CrossRefGoogle Scholar
  25. 25.
    Saito T, Hakomori SI (1971) J Lipid Res 12:257–259Google Scholar
  26. 26.
    Müthing J, Peter-Katalinić J, Hanisch F-G, Unland F, Lehmann J (1994) Glycoconj J 11:153–162CrossRefGoogle Scholar
  27. 27.
    Ueno K, Ando S, Yu RK (1978) J Lipid Res 19:863–871Google Scholar
  28. 28.
    Chester MA (1999) Glycoconj J 16:1–6CrossRefGoogle Scholar
  29. 29.
    Svennerholm L (1963) J Neurochem 10:613–623CrossRefGoogle Scholar
  30. 30.
    Nagra DS, Li L (1995) J Chromatogr A 711:235–245CrossRefGoogle Scholar
  31. 31.
    Hattan SJ, Marchese J, Albertinetti M, Krishnan S, Khainovski N, Juhasz P (2004) J Chromatogr A 1053:291–297Google Scholar
  32. 32.
    Bennion B, Dasgupta S, Hogan EL, Levery SB (2007) J Mass Spectrom 42:598–620CrossRefGoogle Scholar
  33. 33.
    Papac DI, Wong A, Jones AJ (1996) Anal Chem 68:3215–3223CrossRefGoogle Scholar
  34. 34.
    Ivleva VB, Elkin YN, Budnik BA, Moyer SC, O’Connor PB, Costello CE (2004) Anal Chem 76:6484–6491CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute for Medical Physics and BiophysicsUniversity of MünsterMünsterGermany

Personalised recommendations