Advertisement

Analytical and Bioanalytical Chemistry

, Volume 391, Issue 1, pp 97–116 | Cite as

LC-MS-based procedures for monitoring of toxic organophosphorus compounds and verification of pesticide and nerve agent poisoning

  • Harald JohnEmail author
  • Franz Worek
  • Horst Thiermann
Review

Abstract

Organophosphorus compounds (OPCs) are used worldwide as, e.g., flame retardants, plasticizers, and pesticides and remaining stockpiles of OPC nerve agents are present in military arsenals. These OPCs exhibit acute and potential chronic toxicity to man, the environment, and biota thus emphasizing the need for efficient analytical procedures to monitor potential risk to health. Therefore, this review discusses LC-MS-based procedures for OPC detection, addressing sample preparation, separation, ionization, and detection in comprehensive detail. For sample preparation conventional liquid-liquid extraction (LLE) and diverse solid-phase extraction (SPE) procedures are still used most frequently. Nevertheless, during the last three years a number of sophisticated novel methods have been introduced. Solid-phase microextraction (SPME), stir-bar-sorptive extraction (SBSE), membrane-assisted solvent extraction (MASE), and specifically designed molecularly imprinted polymers (MIP) exhibit high potential for frequent use in the future. Additional emphasis in this review is dedicated to the quite young history and current progress in ionization and MS detection of OPCs. The number of relevant published LC-MS reports has tripled in the last five years. This is especially due to the proliferating use of electrospray ionization (ESI), nowadays an indispensable and reliable tool for LC-MS coupling. LC-MS is becoming an appropriate complementary or replacement method for the more traditional GC-MS methods, and not only for non-volatile, hydrophilic, and ionic OPCs. The last section of this review covers recent approaches for verification of OPC poisoning. LC-MS-MS detection of phosphylated peptides generated from inhibited circulating serum butyrylcholinesterase (BChE) by valuable proteomics techniques enables proof of intoxication on the molecular level. Therefore, this review gives a comprehensive overview on the status quo of LC-MS-based OPC analysis in respect of both technical progress and relevant applications.

Figure

Monitoring and verification

Keywords

Biomonitoring Flame retardants LC-MS Nerve agents Organophosphorus compounds Pesticides Verification 

Abbreviations

AChE

Acetylcholinesterase

ACN

Acetonitrile

APCI

Atmospheric pressure chemical ionization

ASE

Accelerated solvent extraction

BChE

Butyrylcholinesterase

ChE

Cholinesterase

CID

Collision-induced dissociation

CMPA

Cyclohexyl methylphosphonic acid

DEPA

Diethyl phosphoric acid

DETPA

Diethyl thiophosphoric acid

DMPA

Dimethyl phosphoric acid

DMTPA

Dimethyl thiophosphoric acid

EE

Ethyl acetate

EPA

Ethyl phosphoric acid

ESI

Electrospray ionization

FA

Formic acid

FAB

Fast atom bombardment

IMPA

Isopropyl methylphosphonic acid

LLE

Liquid-liquid extraction

LLOQ

Lower limit of quantification

log P

Logarithm of octanol/water partition coefficient

MASE

Membrane-assisted solvent extraction

MIP

Molecularly imprinted polymers

MPA

Methylphosphonic acid

PMPA

Pinacolyl methylphosphonic acid

OPC

Organophosphorus compound

OPC-NA

Organophosphorus nerve agent

OPC-P

Organophosphorus pesticide

PBI

Particle beam ionization

RAM

Restricted-access material

RP

Reversed-phase

SBSE

Stir-bar-sorptive extraction

SPE

Solid-phase extraction

SPME

Solid-phase microextraction

TFA

Trifluoroacetic acid

TOF

Time-of-flight

TSP

Thermospray ionization

References

  1. 1.
    Liu J, Wang L, Zheng L, Wang X, Lee FSC (2006) J Chromatogr A 1137:180-187Google Scholar
  2. 2.
    Inoue S, Saito T, Mase H, Suzuki Y, Takazawa K, Yamamoto I, Inokuchi S (2007) J Pharm Biomed Anal 44:258–264Google Scholar
  3. 3.
    Czerwinski SE, Skvorak JP, Maxwell DM, Lenz DE, Baskin SI (2006) J Biochem Mol Toxicol 20:241–246Google Scholar
  4. 4.
  5. 5.
    Bowman BT, Sans WW (1983) J Environ Sci Health B 18B:667–683CrossRefGoogle Scholar
  6. 6.
  7. 7.
    D’Agostino PA, Chenier CL (2007) DRDC Suffield TR 2007–074Google Scholar
  8. 8.
    Bicker W, Lämmerhofer M, Lindner W (2005) J Chromatogr B 822:160–169Google Scholar
  9. 9.
    Borba da Cunha AC, Lopez de Alda MJ, Barcelo D, Pizzolato TM, dos Santos JHZ (2004) Anal Bioanal Chem 378:940–954Google Scholar
  10. 10.
    Pang GF, Cao YZ, Zhang JJ, Fan CL, Liu YM, Li, XM, Jia GQ, Li ZY, Shi YQ, Wu YP, Guo TT (2006) J Chromatogr A 1125:1–30Google Scholar
  11. 11.
    Ellis-Steinborner S, Ramachandran A, Blanskby SJ (2006) Rapid Commun Mass Spectrom 20:1939–1948Google Scholar
  12. 12.
    Rodil R, Quintana JB, Reemtsma T (2005) Anal Chem 77:3083–3089Google Scholar
  13. 13.
    LogKOW software, Syracuse Research Corporation (http://www.syrres.com/esc/est_kowdemo.htm)
  14. 14.
    Mawhinney DB, Hamelin EI, Fraser R, Silva SS, Pavlopoulos AJ, Kobelski RJ (2007) J Chromatogr B 852:235–243Google Scholar
  15. 15.
    Hernandez F, Sancho JV, Pozo OJ (2002) Rapid Commun Mass Spectrom 16:1766–1773Google Scholar
  16. 16.
    http://www.epa.gov/pesticides, EPA test methods 2003
  17. 17.
    Ingelse BA, van Dam RCJ, Vreeken RJ, Mol HGJ, Steijger OM (2001) J Chromatogr A 918:67–78Google Scholar
  18. 18.
    Quintana JB, Reemtsma T (2006) J Chromatogr A 1124:22–28Google Scholar
  19. 19.
    Martinez-Carballo E, Gonzalez-Barreiro C, Sitka A, Scharf S, Gans O (2007) Sci Total Environ 388:290–299Google Scholar
  20. 20.
    Organisation for the Prohibition of Chemical Weapons (http://www.opcw.org)
  21. 21.
    Lei Y, Mulchandani A, Chen W (2005) Biotechnol Prog 21:678–681Google Scholar
  22. 22.
    Amitai G, Adani R, Sod-Moriah G, Rabinovitz I, Vincze A, Leader H, Chefetz B, Leibovitz-Persky L, Friesem D, Hadar Y (1998) FEBS Lett 438:195–200Google Scholar
  23. 23.
    Lai K, Stolowich NJ, Wild JR (1995) Arch Biochem Biophys 318:59–64Google Scholar
  24. 24.
    Richardt A, Blum MM (2008) (eds) Decontamination of warfare agents. Wiley-VCH, WeinheimGoogle Scholar
  25. 25.
    Blasco C, Fernandez M, Pico y, Font G (2004) J Chromatogr A 1030:77–85Google Scholar
  26. 26.
    Love AH, Vance AL, Reynolds JG, Davisson ML (2004) Chemosphere 57:1257–1264Google Scholar
  27. 27.
    Fujioka K, Casina JE (2007) Chem Res Toxicol 20:1211–1217Google Scholar
  28. 28.
    Kiderlen D, Eyer P, Worek F (2005) 69:1853–1867Google Scholar
  29. 29.
    Timchalk C, Busby A, Campbell JA, Needham LL, Barr DB (2007) Toxicology 237:145–157Google Scholar
  30. 30.
    Durand G, De Bertrand N, Barcelo D (1991) J Chromatogr 554:233–250Google Scholar
  31. 31.
    Kouloumbos VN, Tsipi DF, Hiskia AE, Nikolic D, van Breemen RB (2003) J Am Soc Mass Spectrom 14:803–817Google Scholar
  32. 32.
    Peeples ES, Schopfer LM, Duysen EG, Spaulding R, Voelker T, Thompson CM, Lockridge O (2005) Toxicol Sci 83:303–312Google Scholar
  33. 33.
    Eyer P (2003) Toxicol Rev 22:165–190Google Scholar
  34. 34.
    Kim JW, Rainina EI, Mulbry WW, Engler CR, Wild JR (2002) Biotechnol Prog 18:429–436Google Scholar
  35. 35.
    Eto M (1974) (ed) Organophosphorus pesticides: organic and biological chemistry. CRC Press, Cleveland Ohio USAGoogle Scholar
  36. 36.
    Pumera M (2006) J Chromatogr A 1113:5–13Google Scholar
  37. 37.
    Papouskova B, Bednar P, Bartak P, Frycak P, Sevcik J, Stransky Z, Lemr K (2006) J Sep Sci 29:1531–1538Google Scholar
  38. 38.
    Barcelo D (1993) J Chromatogr 643:117–143Google Scholar
  39. 39.
    Lee WE, Thompson HG, Hall JG, Bader DE (2000) Biosens Bioelectron 14:795–804Google Scholar
  40. 40.
    Shu YR, Su AK, Liu JT, Lin CH (2006) Anal Chem 78:4697–4701Google Scholar
  41. 41.
    Steiner WE, Klopsch SJ, English WA, Clowers BH, Hill HH (2005) Anal Chem 77:4792–4799Google Scholar
  42. 42.
    Piao H, Marx RB, Schneider S, Irvine DA, Staton J (2005) J Chromatogr A 1089:65–71Google Scholar
  43. 43.
    Hooijschuur EWJ, Kientz CE, Brinkman UAT (2002) J Chromatogr A 982:177–200Google Scholar
  44. 44.
    Rodriguez I, Calvo F, Quintana JB, Rubi E, Rodil R, Cela R (2006) J Chromatogr 1108:158–165Google Scholar
  45. 45.
    Margarita MG, Tsakalof AK, Tsatsakis AM (2007) Ther Drug Monit 29:150–163Google Scholar
  46. 46.
    Pang GF, Fan CL, Liu YM, Cao YZ, Zhang JJ, Fu BL, Li XM, Li ZY, Wu YP (2006) Food Addit Contam 23:777–810Google Scholar
  47. 47.
    Pang GF, Liu YM, fan CL, Zhang JJ, Cao YZ, Li XM, Li ZY, Wu YP, Guo TT (2006) Anal Bioanal Chem 384:1366–1408Google Scholar
  48. 48.
    Kupfermann N, Schmoldt A, Steinhart H (2004) J Anal Toxicol 28:242–248Google Scholar
  49. 49.
    Somani SM, Romano JA (2001) (eds) Chemical warfare agents: toxicity at low levels. CRC Press LLC, Boca RatonGoogle Scholar
  50. 50.
    Labarga A, Valentin F, Andersson M, Lopez R (2007) Nucleic Acids Research Web Services Issue 2007, ClustalW (http://www.ebi.ac.uk/tools/clustalw/)
  51. 51.
    Le Moullec S, Truong L, Montauban C, Begos A, Pichon V, Bellier B (2007) J Chromatogr A 1139:171–177Google Scholar
  52. 52.
    D’Agostino PA, Hancock JR, Provost LR (1999) J Chromatogr A 840:289–294Google Scholar
  53. 53.
    D’Agostino PA, Chenier CL, Hancock JR (2002) J Chromatogr A 950:149–156Google Scholar
  54. 54.
    D’Agostino PA, Hancock JR, Chenier CL, Lepade CRJ (2006) J Chromatogr A 1110:86–94Google Scholar
  55. 55.
    Möller K, Crescenzi C, Nilsson U (2004) Anal Bioanal Chem 378:197–204Google Scholar
  56. 56.
    Barcelo D, Durand G, Vreeken RJ, De Jong GJ, Lingeman H, Brinkman UAT (1991) J Chromatogr 553:311–328Google Scholar
  57. 57.
    Barcelo D, Albaiges J (1989) J Chromatogr 474:163–173Google Scholar
  58. 58.
    Barcelo D, Maris FA, Geerdink RB, Frei RW, De Jong GJ, Brinkman UAT (1987) J Chromatogr 394:65–76Google Scholar
  59. 59.
    Spliid NH, Koppen B (1996) J Chromatogr A 736:105–114Google Scholar
  60. 60.
    Marin JM, Pozo OJ, Beltran J, Hernandez F (2006) Rapid Commun Mass Spectrom 20:419–426Google Scholar
  61. 61.
    Jansson C, Pihlström T, Österdahl BG, Markides KE (2004) J Chromatogr A 1023:93–104Google Scholar
  62. 62.
    Noort D, Hulst AG, Platenburg DHJM, Polhuijs M, Benschop HP (1998) Arch Toxicol 72:671–675Google Scholar
  63. 63.
    Dulaurent S, Saint-Marcoux F, Marquet P, Lachatre G (2006) J Chromatogr B 831:223–229Google Scholar
  64. 64.
    Hauser B, Schellin M, Popp P (2004) Anal Chem 76:6029–6038Google Scholar
  65. 65.
    Schellin M, Hauser B, Popp P (2004) J Chromatogr A 1040:251–258Google Scholar
  66. 66.
    Czerwinski SE, Maxwell DM, Lenz DE (1998) Toxicol Methods 8:139–149Google Scholar
  67. 67.
    Kanaujia PK, Pardasani D, Gupta AK, Dubey DK (2007) J Chromatogr A 1139:185–190Google Scholar
  68. 68.
    Cappiello A, Famiglini G, Palma P, Mangani F (2002) Anal Chem 74:3547–3554Google Scholar
  69. 69.
    Prieto A, Ettiene G, Medina D, Buscema I, Gonzalez G, Araujo L (1999) Food Addit Contam 16:57–61Google Scholar
  70. 70.
    Liu M, Hashi Y, Song Y, Lin JM (2005) J Chromatogr A 1097:183–187Google Scholar
  71. 71.
    He Y, Liu YH (2007) Chromatographia 65:581–590Google Scholar
  72. 72.
    Capuis F, Pichon V, Hennion MC (2004) LC-GC Europe 17:408–417Google Scholar
  73. 73.
    Gallardo E, Barroso M, Margalho C, Cruz A, Vieira DN, Lopez-Rivadulla M (2006) J Chromatogr B 832:162–168Google Scholar
  74. 74.
    Amini N, Crescenzi C (2003) J Chromatogr B 795:245–256Google Scholar
  75. 75.
    Machtejevas E, John H, Wagner K, Ständker L, Marko-Varga G, Forssmann WG, Bischoff R, Unger KK (2004) J Chromatogr B 803:121–130Google Scholar
  76. 76.
    Wagner K, Miliotis T, Marko-Varga G, Bischoff R, Unger KK (2002) Anal Chem 74:809–820Google Scholar
  77. 77.
    Aguilar C, Borrull F, Marce RM (1998) J Chromatogr A 805:127–135Google Scholar
  78. 78.
    Lacorte S, Barcelo D (1995) J Chromatogr A 712:103–112Google Scholar
  79. 79.
    Hernandez F, Ibanez M, Sancho JV, Pozo OJ (2004) Anal Chem 76:4349–4357Google Scholar
  80. 80.
    Sancho JV, Pozo OJ, Hernandez F (2000) Rapid Commun Mass Spectrom 14:1485–1490Google Scholar
  81. 81.
    Beeson MD, Driskell WJ, Barr DB (1999) Anal Chem 71:3526–3530Google Scholar
  82. 82.
    Baker SE, Barr DB, Driskell WJ, Beeson MD, Needham LL (2000) J Expo Anal Environ Epidemiol 10:789–798Google Scholar
  83. 83.
    Katagi M, Tatsuno M, Nishikawa M, Tsuchihashi H (1999) J Chromatogr A 833:169–179Google Scholar
  84. 84.
    Beike J, Ortmann C, Meiners T, Brinkmann B, Köhler H (2002) J Anal Toxicol 26:308–312Google Scholar
  85. 85.
    Olsson AO, Nguyen JV, Sadowski MA, Barr DB (2003) Anal Bioanal Chem 376:808–815Google Scholar
  86. 86.
    Ciner FL, McCord CE, Plunkett RW, Martin MF, Croley TR (2007) J Chromatogr B 846:42–50Google Scholar
  87. 87.
    Bacaloni A, Cavaliere C, Foglia P, Nazzari M, Saperi R, Lagana A (2007) Rapid Commun Mass Spectrom 21:1123–1130Google Scholar
  88. 88.
    Sinderhauf K, Schwack W (2004) J Agric Food Chem 52:8046–8052Google Scholar
  89. 89.
    O’Connor AM (2007) Analysis of nerve agent degradation products by UPLC/MS/MS. Waters Corporation, poster at FPRW 2007 (http://www.waters.com; library No 720002314EN)
  90. 90.
    Dahlmann J, von Czapiewski K, Schreiber A, Ozeki Y, Werres F (2006) Direct injection of water to analyze dissociated organo-phosphorous pesticides and their degradation products. Applied Biosystems, application note: Glyphosate, publication 114AP51–01Google Scholar
  91. 91.
    D’Agostino PA, Hancock JR, Provost LR (1999) J Chromatogr A 837:93–105Google Scholar
  92. 92.
    Henderson MC, Krueger SK, Siddens LK, Stevens JF, Williams DE (2004) Biochem Pharmacol 68:959–967Google Scholar
  93. 93.
    Li JT, Ruan JX, Zhang ZQ, Yu WD, Song ZY, Qiao JZ (2003) Toxicol Lett 138:227–233Google Scholar
  94. 94.
    Li Jt, Ruan JX, Zhang ZQ, Yuan SL, Yu WD, Song ZY (2003) Life Sci 73:1053–1062Google Scholar
  95. 95.
    Spruit HET, Trap HC, Langenberg JP, Benschop HP (2001) J Anal Toxicol 25:57–61Google Scholar
  96. 96.
    Reiter G, Koller M, Thiermann H, Dorandeu F, Mikler J, Worek F (2007) J Chromatogr B 859:9–15Google Scholar
  97. 97.
    Van der Schans MJ, Lander BJ, van der Weil H, Langenberg JP, Benschop HP (2003) Toxicol Appl Pharmacol 191:48–62Google Scholar
  98. 98.
    Yen JH, Tsai CC, Wang YS (2003) Ecotoxicol Environ Safe 55:236–242Google Scholar
  99. 99.
    Volmer D, Levsen K, Wünsch G (1994) J Chromatogr A 660:231–248Google Scholar
  100. 100.
    Farran A, De Pablo J, Barcelo D (1988) J Chromatogr 455:163–172Google Scholar
  101. 101.
    Smith JR, Shih ML (2001) J Appl Toxicol 21:S27–S34Google Scholar
  102. 102.
    Black R, Read RW (1998) J Chromatogr A 794:233–244Google Scholar
  103. 103.
    Read RW, Black RM (1999) J Chromatogr A 862:169–177Google Scholar
  104. 104.
    John H, Walden M, Schäfer S, Genz S, Forssmann WG (2004) Anal Bioanal Chem 378:883–897Google Scholar
  105. 105.
    Noort D, Benschop HP, Black RM (2002) Toxicol Appl Pharmacol 184:116–126Google Scholar
  106. 106.
    Black RM, Noort D (2005) Analysis of free metabolites. In Mesilaakso M (2005) (ed) Chemical weapons convention chemicals analysis. Wiley-VCH, WeinheimGoogle Scholar
  107. 107.
    Black RM, Noort D (2005) Mass spectrometric and immunological analysis of covalent adducts to proteins and DNA. In Mesilaakso M (2005) (ed) Chemical weapons convention chemicals analysis. Wiley-VCH, WeinheimGoogle Scholar
  108. 108.
    Eddleston M, Buckley NA, Eyer P, Dawson AH (2007) Lancet DOI  10.1016/S0140-6736(07)61202-1
  109. 109.
    Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) Biochem Pharmacol 7:88–95Google Scholar
  110. 110.
    Barr DB, Turner WE, DiPietro E, McClure PC, Baker SE, Barr JR, Gehle K, Grissom RE, Bravo R, Driskell WJ, Patterson DG, Hill RH, Needham LL, Pirkle JL, Sampson EJ (2002) Environ Health Perspect 110(l6):1085–1091Google Scholar
  111. 111.
    Adams TK, Capacio BR, Smith JR, Whalley CE, Korte WD (2004) Drug Chem Toxicol 27:77–91Google Scholar
  112. 112.
    Fidder A, Hulst AG, Noort D, de Ruiter R, van der Schans MJ, Benschop HP, Langenberg JP (2002) Chem Res Toxicol 15:582–590Google Scholar
  113. 113.
    Grunwald J, Marcus D, Papier Y, Raveh L, Pittel Z, Ashani Y (1997) J Biochem Biophys Methods 34:123–135Google Scholar
  114. 114.
    Graham JR, Wright BS, Rezk PE, Gordon RK, Sciuto AM, Nambiar MP (2006) Inhal Toxicol 18:493–500Google Scholar
  115. 115.
    Tsuge K, Seto Y (2006) J Chromatogr B 838:21–30Google Scholar
  116. 116.
    Noort D, Fidder A, van der Schans MJ, Hulst AG (2006) Anal Chem 78:6640–6644Google Scholar
  117. 117.
    Spaulding RS, George KM, Thompson CM (2006) J Chromatogr B 830:105–113Google Scholar
  118. 118.
    Tsuge K, Seto Y (2002) J Chromatogr B 776:79–88Google Scholar
  119. 119.
    Williams NH, Harrison JM, Read RW, Black RM (2007) Arch Toxicol 81:627–639Google Scholar
  120. 120.
    Li B, Schopfer LM, Hinrichs SH, Masson P, Lockridge O (2007) Anal Biochem 361:263–272Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Bundeswehr Institute of Pharmacology and ToxicologyMunichGermany

Personalised recommendations