Skip to main content
Log in

Recent advances in electric analysis of cells in microfluidic systems

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Microfluidics offers an ideal platform to integrate cell-based assays with electric measurements. The technological advances in microfluidics, microelectronics, electrochemistry, and electrophysiology have greatly inspired the development of microfluidic/electric devices that work with a low number of cells or single cells. The applications of these microfluidic systems range from the detecting of cell culture density to the probing of cellular functions at the single-cell level. In this review, we introduce the recent advances in the electric analysis of cells on a microfluidic platform, specifically related to the quantification and monitoring of cells in static solution, on-chip patch-clamp measurement, and examination of flowing cells. We also point out future directions and challenges in this field.

Different microfluidic devices applied to electrical analysis of cells

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Anal Chem 70:4974–4984

    CAS  Google Scholar 

  2. Unger M, Chou H, Thorsen T, Scherer A, Quake S (2000) Science 288:113–116

    CAS  Google Scholar 

  3. Xia Y, Whitesides G (1998) Angew Chem Int Ed 37:551–575

    Google Scholar 

  4. Andersson H, van den Berg A (2003) Sens Actuators B 92:315–325

    Google Scholar 

  5. Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications, 2nd edn. Wiley, New York, pp. 370–390

    Google Scholar 

  6. Neher E, Sakmann B (1976) Nature 260:799–802

    CAS  Google Scholar 

  7. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Pflugers Arch 391:85–100

    CAS  Google Scholar 

  8. Sakmann B, Neher E (1984) Annu Rev Physiol 46:455–472

    CAS  Google Scholar 

  9. Cady P (1975) In: Heden CG, Illeni T (eds) New approaches to the identification of microorganizms. Wiley, New York, pp. 73–99

    Google Scholar 

  10. Firstenberg-Eden R, Eden G (1984) In: Sharpe AN (ed) Impedance microbiology. Research Studies, Letchworth, p. 170

    Google Scholar 

  11. Valentinuzzi ME, Morucci JP, Felice CJ (1996) In: Bourne JR (ed) Critical reviews in biomedical engineering, vol 24. Part II: Bioelectrical impedance technique in medicine. Begell House, New York, pp. 353–466

    Google Scholar 

  12. Wawerla M, Stolle A, Schalch B, Eisgruber H (1999) J Food Prot 62:1488–1496

    CAS  Google Scholar 

  13. Gomez R, Bashir R, Sarikaya A, Ladisch MR, Sturgis J, Robinson JP, Geng T, Bhunia AK, Apple HL, Wereley S (2001) Biomed Microdevices 3:201–209

    CAS  Google Scholar 

  14. Iliescu C, Poenar DP, Carp M, Loe FC (2007) Sens Actuators B 123:168–176

    Google Scholar 

  15. Gomez-Sjoberg R, Morisette DT, Bashir R (2005) J Microelectromech Syst 14:829–838

    CAS  Google Scholar 

  16. Medoro G, Manaresi N, Leonardi A, Altomare L, Tartagni M, Guerrieri R (2003) IEEE Sens J 3:317–325

    CAS  Google Scholar 

  17. Wu J, Ben YX, Battigelli D, Chang HC (2005) Ind Eng Chem Res 44:2815–2822

    CAS  Google Scholar 

  18. Minerick AR, Zhou RH, Takhistov P, Chang HC (2003) Electrophoresis 24:3703–3717

    CAS  Google Scholar 

  19. Ichiki T, Shinbashi S, Ujiie T, Horiike Y (2002) J Photopolym Sci Technol 15:487–492

    CAS  Google Scholar 

  20. Yang M, Lim CC, Liao R, Zhang X (2007) Biosens Bioelectron 22:1688–1693

    CAS  Google Scholar 

  21. Gascoyne PRC, Vykoukal JV (2004) Proc IEEE 92:22–42

    CAS  Google Scholar 

  22. Liu YS, Walter TM, Chang WJ, Lim KS, Yang LJ, Lee SW, Aronson A, Bashir R (2007) Lab Chip 7:603–610

    CAS  Google Scholar 

  23. Mishra NN, Retterer S, Zieziulewicz TJ, Isaacson M, Szarowski D, Mousseau DE, Lawrence DA, Turner JN (2005) Biosens Bioelectron 21:696–704

    CAS  Google Scholar 

  24. Boehm AD, Gottlieb P, Hua ZS (2007) Proc SPIE 6529:65290H65291–65290H65298

  25. Boehm AD, Gottlieb AP, Hua ZS (2007) Sens Actuators B 126:508–514

    Google Scholar 

  26. Varshney M, Li YB, Srinivasan B, Tung S (2007) Sens Actuators B 128:99–107

    Google Scholar 

  27. Banada PP, Liu YS, Yang LJ, Bashir R, Bhunia AK (2006) Int J Food Microbiol 111:12–20

    CAS  Google Scholar 

  28. Cheng XH, Liu YS, Irimia D, Demirci U, Yang LJ, Zamir L, Rodríguez WR, Toner M, Bashir R (2007) Lab Chip 7:746–755

    CAS  Google Scholar 

  29. Facer GR, Notterman DA, Sohn LL (2001) Appl Phys Lett 78:996–998

    CAS  Google Scholar 

  30. Sengupta S, Battigelli DA, Chang HC (2006) Lab Chip 6:682–692

    CAS  Google Scholar 

  31. Ateya DA, Sachs F, Gottlieb PA, Besch S, Hua SZ (2005) Anal Chem 77:1290–1294

    CAS  Google Scholar 

  32. Giaever I, Keese CR (1993) Nature 366:591–592

    CAS  Google Scholar 

  33. Yeon JH, Park JK (2005) Anal Biochem 341:308–315

    CAS  Google Scholar 

  34. Cho S, Becker S, von Briesen H, Thielecke H (2007) Sens Actuators B 123:978–982

    Google Scholar 

  35. Campbell EC, Laane MM, Haugarvoll E, Giaever I (2007) Biosens Bioelectron 23:536–542

    CAS  Google Scholar 

  36. Hediger S, Fontannaz J, Sayah A, Hunziker W, Gijs MAM (2000) Sens Actuators B 63:63–73

    Google Scholar 

  37. Linderholm P, Braschler T, Vannod J, Barrandon Y, Brouard M, Renaud P (2006) Lab Chip 6:1155–1162

    CAS  Google Scholar 

  38. Wang J, Rivas G, Cai XH (1997) Electroanalysis 9:395–398

    CAS  Google Scholar 

  39. Marquette CA, Lawrence MF, Blum LJ (2006) Anal Chem 78:959–964

    CAS  Google Scholar 

  40. Brischwein M, Herrmann S, Vonau W, Berthold F, Grothe H, Motrescu ER, Wolf B (2006) Lab Chip 6:819–822

    CAS  Google Scholar 

  41. Cho YH, Yamamoto T, Sakai Y, Fujii T, Kim B (2006) J Microelectromech Syst 15:287–295

    CAS  Google Scholar 

  42. Reichle C, Schnelle T, Muller T, Leya T, Fuhr G (2000) Biochim Biophys Acta Bioenerg 1459:218–229

    CAS  Google Scholar 

  43. Cho SB, Thielecke H (2007) Biosens Bioelectron 22:1764–1768

    CAS  Google Scholar 

  44. Sun XH, Gillis KD (2006) Anal Chem 78:2521–2525

    CAS  Google Scholar 

  45. Li MW, Spence DM, Martin RS (2005) Electroanalysis 17:1171–1180

    CAS  Google Scholar 

  46. Huang WH, Cheng W, Zhang Z, Pang DW, Wang ZL, Cheng JK, Cui DF (2004) Anal Chem 76:483–488

    CAS  Google Scholar 

  47. Son SU, Seo JH, Choi YH, Lee SS (2006) Sens Actuators A 130:267–272

    Google Scholar 

  48. Cai XX, Klauke N, Glidle A, Cobbold P, Smith GL, Cooper JM (2002) Anal Chem 74:908–914

    CAS  Google Scholar 

  49. Cheng W, Klauke N, Sedgwick H, Smith GL, Cooper JM (2006) Lab Chip 6:1424–1431

    CAS  Google Scholar 

  50. Krommenhoek EE, Gardeniers JGE, Bomer JG, Li X, Ottens M, van Dedem GWK, Van Leeuwen M, van Gulik WM, van der Wielen LAM, Heijnen JJ, van den Berg A (2007) Anal Chem 79:5567–5573

    CAS  Google Scholar 

  51. Amatore C, Arbault S, Chen Y, Crozatier C, Tapsoba I (2007) Lab Chip 7:233–238

    CAS  Google Scholar 

  52. ul Haque A, Rokkam M, De Carlo AR, Wereley ST, Roux SJ, Irazoqui PP, Porterfield DM (2007) Sens Actuators B 123:391–399

    Google Scholar 

  53. Brischwein M, Motrescu ER, Cabala E, Otto AM, Grothe H, Wolf B (2003) Lab Chip 3:234–240

    CAS  Google Scholar 

  54. Werdich AA, Lima EA, Ivanov B, Ges I, Anderson ME, Wikswo JP, Baudenbacher FJ (2004) Lab Chip 4:357–362

    CAS  Google Scholar 

  55. Claverol-Tinture E, Cabestany J, Rosell X (2007) IEEE Trans Biomed Eng 54:331–335

    CAS  Google Scholar 

  56. Suzuki I, Sugio Y, Jimbo Y, Yasuda K (2005) Lab Chip 5:241–247

    CAS  Google Scholar 

  57. Romanova EV, Fosser KA, Rubakhin SS, Nuzzo RG, Sweedler JV (2004) FASEB J 18:1267–1269

    CAS  Google Scholar 

  58. Ravula SK, McClain MA, Wang MS, Glass JD, Frazier AB (2006) Lab Chip 6:1530–1536

    CAS  Google Scholar 

  59. Kintzios S, Marinopoulou I, Moschopoulou G, Manganab O, Nomikou K, Endo K, Papanastasiou I, Simonian A (2006) Biosens Bioelectron 21:1365–1373

    CAS  Google Scholar 

  60. Ges IA, Ivanov BL, Schaffer DK, Lima EA, Werdich AA, Baudenbacher FJ (2005) Biosens Bioelectron 21:248–256

    CAS  Google Scholar 

  61. Popovtzer R, Neufeld T, Ron EZ, Rishpon J, Shacham-Diamand Y (2006) Sens Actuators B 119:664–672

    Google Scholar 

  62. Milgrew MJ, Riehle MO, Cumming DRS (2005) Sens Actuators B 111:347–353

    Google Scholar 

  63. Saito T, Wu CC, Shiku H, Yasukawa T, Yokoo M, Ito-Sasaki T, Abe H, Hoshi H, Matsue T (2006) Analyst 131:1006–1011

    CAS  Google Scholar 

  64. Torisawa YS, Takagi A, Nashimoto Y, Yasukawa T, Shiku H, Matsue T (2007) Biomaterials 28:559–566

    CAS  Google Scholar 

  65. Asmild M, Oswald N, Krzywkowski KM, Friis S, Jacobsen RB, Reuter D, Taboryski R, Kutchinsky J, Vestergaard RK, Schroder RL, Sorensen CB, Bech M, Korsgaard MPG, Willumsen NJ (2003) Receptors Channels 9:49–58

    CAS  Google Scholar 

  66. Granfeldt D, Sinclair J, Millingen M, Farre C, Lincoln P, Orwar O (2006) Anal Chem 78:7947–7953

    CAS  Google Scholar 

  67. Sigworth FJ, Klemic KG (2005) IEEE Trans Nanobiosci 4:121–127

    Google Scholar 

  68. Bruggemann A, Stoelzle S, George M, Behrends JC, Fertig N (2006) Small 2:840–846

    Google Scholar 

  69. Schmidt C, Mayer M, Vogel H (2000) Angew Chem Int Ed 39:3137–3140

    CAS  Google Scholar 

  70. Pantoja R, Sigg D, Blunck R, Bezanilla F, Heath JR (2001) Biophys J 81:2389–2394

    Article  CAS  Google Scholar 

  71. Fertig N, Meyer C, Blick RH, Trautmann C, Behrends JC (2001) Phys Rev E 6404

  72. Fertig N, Klau M, George M, Blick RH, Behrends JC (2002) Appl Phys Lett 81:4865–4867

    CAS  Google Scholar 

  73. Fertig N, Blick RH, Behrends JC (2002) Biophys J 82:3056–3062

    CAS  Google Scholar 

  74. Krishnamurthy V (2004) IEEE Trans Nanobioscience 3:217–224

    Google Scholar 

  75. Sondermann M, George M, Fertig N, Behrends JC (2006) Biochim Biophys Acta Biomembr 1758:545–551

    CAS  Google Scholar 

  76. Klemic KG, Klemic JF, Reed MA, Sigworth FJ (2002) Biosens Bioelectron 17:597–604

    CAS  Google Scholar 

  77. Klemic KG, Klemic JF, Sigworth FJ (2005) Pflugers Arch 449:564–572

    CAS  Google Scholar 

  78. Li XH, Klemic KG, Reed MA, Sigworth FJ (2006) Nano Lett 6:815–819

    CAS  Google Scholar 

  79. Seo J, Ionescu-Zanetti C, Diamond J, Lal R, Lee LP (2004) Appl Phys Lett 84:1973–1975

    CAS  Google Scholar 

  80. Ionescu-Zanetti C, Shaw RM, Seo JG, Jan YN, Jan LY, Lee LP (2005) Proc Natl Acad Sci USA 102:9112–9117

    CAS  Google Scholar 

  81. Lau AY, Hung PJ, Wu AR, Lee LP (2006) Lab Chip 6:1510–1515

    CAS  Google Scholar 

  82. Chen CC, Folch A (2006) Lab Chip 6:1338–1345

    CAS  Google Scholar 

  83. Lehnert T, Gijs MAM, Netzer R, Bischoff U (2002) Appl Phys Lett 81:5063–5065

    CAS  Google Scholar 

  84. Lehnert T, Nguyen DMT, Baldi L, Gijs MAM (2007) Microfluidics Nanofluidics 3:109–117

    Google Scholar 

  85. Sordel T, Garnier-Raveaud S, Sauter F, Pudda C, Marcel F, De Waard M, Arnoult C, Vivaudou M, Chatelain F, Picollet-D’hahan N (2006) J Biotechnol 125:142–154

    CAS  Google Scholar 

  86. Ong WL, Kee JS, Ajay A, Ranganathan N, Tang KC, Yobas L (2006) Appl Phys Lett 89:093902

    Google Scholar 

  87. Matthews B, Judy JW (2006) J Microelectromech Syst 15:214–222

    Google Scholar 

  88. Pantoja R, Nagarah JM, Starace DM, Melosh NA, Blunck R, Bezanilla F, Heath JR (2004) Biosens Bioelectron 20:509–517

    CAS  Google Scholar 

  89. Li S, Lin LW (2007) Sens Actuators A 134:20–26

    Google Scholar 

  90. Sinclair J, Pihl J, Olofsson J, Karlsson M, Jardemark K, Chiu DT, Orwar O (2002) Anal Chem 74:6133–6138

    CAS  Google Scholar 

  91. Sinclair J, Olofsson J, Pihl J, Orwar O (2003) Anal Chem 75:6718–6722

    CAS  Google Scholar 

  92. Sinclair J, Granfeldt D, Pihl J, Millingen M, Lincoln P, Farre C, Peterson L, Orwar O (2006) J Am Chem Soc 128:5109–5113

    CAS  Google Scholar 

  93. Hsu CH, Chen CC, Folch A (2004) Lab Chip 4:420–424

    CAS  Google Scholar 

  94. Straub B, Meyer E, Fromherz P (2001) Nat Biotechnol 19:121–124

    CAS  Google Scholar 

  95. Kind T, Issing M, Arnold R, Muller B (2002) IEEE Trans Biomed Eng 49:1600–1609

    Google Scholar 

  96. Wrobel G, Seifert R, Ingebrandt S, Enderlein J, Ecken H, Baumann A, Kaupp UB, Offenhausser A (2005) Biophys J 89:3628–3638

    CAS  Google Scholar 

  97. Stein B, George M, Gaub HE, Parak WJ (2004) Sens Actuators B 98:299–304

    Google Scholar 

  98. Han A, Frazier AB (2006) Lab Chip 6:1412–1414

    CAS  Google Scholar 

  99. Chen P, Xu B, Tokranova N, Feng XJ, Castracane J, Gillis KD (2003) Anal Chem 75:518–524

    CAS  Google Scholar 

  100. Givan AL (2001) Flow cytometry: First principles, Wiley-Liss, New York

    Google Scholar 

  101. Ormerod MG (ed) (2000) Flow cytometry. Oxford University Press, Oxford

  102. Ayliffe HE, Frazier AB, Rabbitt RD (1999) J Microelectromech Syst 8:50

    Google Scholar 

  103. Chun HG, Chung TD, Kim HC (2005) Anal Chem 77:2490–2495

    CAS  Google Scholar 

  104. Gawad S, Schild L, Renaud P (2001) Lab Chip 1:76–82

    CAS  Google Scholar 

  105. Cheung K, Gawad S, Renaud P (2005) Cytometry A 65:124–132

    Google Scholar 

  106. Sohn LL, Saleh OA, Facer GR, Beavis AJ, Allan RS, Notterman DA (2000) Proc Natl Acad Sci USA 97:10687–10690

    CAS  Google Scholar 

  107. Gao N, Wang WL, Zhang XL, Jin WR, Yin XF, Fang ZL (2006) Anal Chem 78:3213–3220

    CAS  Google Scholar 

  108. Xia FQ, Jin WR, Yin XF, Fang ZL (2005) J Chromatogr A 1063:227–233

    Google Scholar 

  109. McClain MA, Culbertson CT, Jacobson SC, Allbritton NL, Sims CE, Ramsey JM (2003) Anal Chem 75:5646–5655

    CAS  Google Scholar 

  110. Wang HY, Lu C (2006) Chem Commun 3528–3530

Download references

Acknowledgements

The authors acknowledge support by a cooperative agreement with the Agricultural Research Service of the US Department of Agriculture, project number 1935-42000-035 through the Center for Food Safety Engineering at Purdue University, and by an Early Career Award to C.L. from the Wallace H. Coulter Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, N., Wang, J. & Lu, C. Recent advances in electric analysis of cells in microfluidic systems. Anal Bioanal Chem 391, 933–942 (2008). https://doi.org/10.1007/s00216-008-1899-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-1899-x

Keywords

Navigation