Analytical and Bioanalytical Chemistry

, Volume 391, Issue 1, pp 239–250 | Cite as

Application of LC and GC hyphenated with mass spectrometry as tool for characterization of unknown derivatives of isoflavonoids

  • Ronald Maul
  • Nils Helge Schebb
  • Sabine E. Kulling
Original Paper

Abstract

Polyphenols belonging to the class of secondary metabolites of plants and microorganisms play an important role as bioactive food constituents as well as contaminants. Structure elucidation of polyphenols in plant extracts or polyphenol metabolites, especially those arising during biotransformation, still represents a challenge for analytical chemistry. Various approaches have been proposed to utilize fragmentation reactions in connection with mass spectrometry (MS) for structural considerations on polyphenolic targets. We compiled and applied specific liquid chromatography (LC)–electrospray ionization in positive mode [ESI(+)]–tandem MS (MS/MS) and gas chromatography (GC)–(electron impact, EI)–MS/MS fragmentation reactions with a special focus on the analysis of isoflavones, whereby this technique was also found to be extendable to determine further polyphenols. For ESI(+)-MS the basic retro-Diels–Alder (rDA) fragmentation offers information about the substitution pattern in the A- and B-rings of flavonoids and the elimination of a protonated 4-methylenecyclohexa-2,5-dienone (m/z = 107) fragment can be used as a diagnostic tool for many isoflavanones. For GC-(EI)-MS/MS analysis after derivatization of the analytes to their trimethylsilyl ethers, the elimination of methyl radicals, tetramethylsilane groups or the combined loss of two methyl groups can be shown to be specific for certain substitution patterns in polyphenols. The applicability of the fragmentation reactions presented is demonstrated exemplarily for three derivatives of the isoflavone irilone. With the help of these fragmentation reactions of the two MS techniques combined, a reliable identification of polyphenols is possible. Especially in such cases where NMR cannot be utilized owing to low analyte amounts being available or prior to purification, valuable information can be obtained.

Keywords

Fragmentation reactions Gas chromatography–mass spectrometry Irilone Isoflavonoides Liquid chromatography–mass spectrometry Structure analyses 

Abbreviations

AOH

alternariol

BIOA

biochanin A

BSTFA

N,O-bis(trimethylsilyl)trifluoroacetamide

DAI

daidzein

DHD

dihydrodaidzein

DHG

dihydrogenistein

EI

electron impact

ESI

electrospray ionization

ESI(+)

electrospray ionization in positive mode

ESI(−)

electrospray ionization in negative mode

FORM

formononetin

GC

gas chromatography

GEN

genistein

GLY

glycitein

HFM

human fecal microflora

IRI

irilone

IFA

isoflavane

IFAO

isoflavanone

IF

isoflavone

LC

liquid chromatography

MS

mass spectrometry

PRUN

prunetin

rDA

retro Diels–Alder

TMS

trimethylsilyl

ZAL

zearalanol

ZAN

zearalanone

Supplementary material

216_2008_1884_MOESM1_ESM.pdf (123 kb)
ESM(PDF 122 KB)

References

  1. 1.
    Bingham SA, Atkinson C, Liggins J, Bluck L, Coward A (1998) Br J Nutr 79:393–406CrossRefGoogle Scholar
  2. 2.
    Kinjo J, Tsuchihashi R, Morito K, Hirose T, Aomori T, Nagao T, Okabe H, Nohara T, Masamune Y (2004) Biol Pharm Bull 27:185–188CrossRefGoogle Scholar
  3. 3.
    Engelman HM, Alekel DL, Hanson LN, Kanthasamy AG, Reddy MB (2005) Am J Clin Nutr 81:590–596Google Scholar
  4. 4.
    van der Schouw YT, Kreijkamp-Kaspers S, Peeters PHM, Keinan-Boker L, Rimm EB, Grobbee DE (2005) Circulation 111:465–471CrossRefGoogle Scholar
  5. 5.
    Wuttke W, Jarry H, Seidlova-Wuttke D (2007) Ageing Res Rev 6:150–188CrossRefGoogle Scholar
  6. 6.
    Wu Q, Wang M, Simon JE (2003) J Chromatogr A 1016:195–209CrossRefGoogle Scholar
  7. 7.
    Heinonen SM, Wahala K, Adlercreutz H (2004) J Agric Food Chem 52:6802–6809CrossRefGoogle Scholar
  8. 8.
    Setchell KD, Brown NM, Lydeking-Olsen E (2002) J Nutr 132:3577–3584Google Scholar
  9. 9.
    Ruefer CE, Maul R, Donauer E, Fabian EJ, Kulling SE (2007) Mol Nutr Food Res 51:813–823CrossRefGoogle Scholar
  10. 10.
    Horman I, Viani R (1971) Org Mass Spectrom 5:203–219CrossRefGoogle Scholar
  11. 11.
    Smith GG, Djerassi C (1971) Org Mass Spectrom 5:487–489CrossRefGoogle Scholar
  12. 12.
    Cimino CO, Shelnutt SR, Ronis MJ, Badger TM (1999) Clin Chim Acta 287:69–82CrossRefGoogle Scholar
  13. 13.
    Anonymous (2006) Homöopathisches Arzneibuch. Deutscher Apotheker, StuttgartGoogle Scholar
  14. 14.
    Kulling SE, Honig DM, Simat TJ, Metzler M (2000) J Agric Food Chem 48:4963–4972CrossRefGoogle Scholar
  15. 15.
    Fabre N, Rustan I, de Hoffmann E, Quetin-Leclercq J (2001) J Am Soc Mass Spectrom 12:707–715CrossRefGoogle Scholar
  16. 16.
    Barbuch RJ, Coutant JE, Welsh MB, Setchell KDR (1989) Biomed Environ Mass Spectrom 18:973–977CrossRefGoogle Scholar
  17. 17.
    Antignac JP, Cariou R, Le Bizec B, Cravedi JP, Andre F (2003) Rapid Commun Mass Spectrom 17:1256–1264CrossRefGoogle Scholar
  18. 18.
    Parmar VS, Sanduja SK, Jha NH, Kukla AS (1985) Org Mass Spectrom 20:265–266CrossRefGoogle Scholar
  19. 19.
    Zhang L, Xu L, Xiao S-S, Liao Q-F, Li Q, Liang J, Chen X-H, Bi K-S (2007) J Pharm Biomed Anal 44:1019–1028CrossRefGoogle Scholar
  20. 20.
    Creaser CS, Koupaiabyazani MR, Stephenson GR (1991) Org Mass Spectrom 26:157–160CrossRefGoogle Scholar
  21. 21.
    Hvattum E, Ekeberg D (2003) J Mass Spectrom 38:43–49CrossRefGoogle Scholar
  22. 22.
    March RE, Miao X-S, Metcalfe CD, Stobiecki M, Marczak L (2004) Int J Mass Spectrom 232:171–183CrossRefGoogle Scholar
  23. 23.
    Rufer CE, Glatt H, Kulling SE (2006) Drug Metab Dispos 34:51–60CrossRefGoogle Scholar
  24. 24.
    Locati D, Morandi S, Cupisti A, Ghiadoni L, Arnoldi A (2005) Rapid Commun Mass Spectrom 19:3473–3481CrossRefGoogle Scholar
  25. 25.
    Heinonen S, Wahala K, Adlercreutz H (1999) Anal Biochem 274:211–219CrossRefGoogle Scholar
  26. 26.
    Kelly GE, Nelson C, Waring MA, Joannou GE, Reeder AY (1993) Clin Chim Acta 223:9–22CrossRefGoogle Scholar
  27. 27.
    Grace PB, Taylor JI, Botting NP, Fryatt T, Oldfield MF, Bingham SA (2003) Anal Biochem 315:114–21CrossRefGoogle Scholar
  28. 28.
    Tekel J, Daeseleire E, Heeremans A, van Peteghem C (1999) J Agric Food Chem 47:3489–3494CrossRefGoogle Scholar
  29. 29.
    Porter PM, Banwart WL, Hassett JJ (1985) Environ Exp Bot 25:229–232CrossRefGoogle Scholar
  30. 30.
    Pfeiffer E, Schebb NH, Podlech J, Metzler M (2007) Mol Nutr Food Res 51:307–316CrossRefGoogle Scholar
  31. 31.
    Pfeiffer E, Heyting A, Metzler M (2007) Mol Nutr Food Res 51:867–871CrossRefGoogle Scholar
  32. 32.
    Creaser CS, Koupai-Abyazani MR, Stephenson GR (1992) Analyst 117:1105–1109CrossRefGoogle Scholar
  33. 33.
    Heinonen SM, Hoikkala A, Wahala K, Adlercreutz H (2003) J Steroid Biochem Mol Biol 87:285–299CrossRefGoogle Scholar
  34. 34.
    Woodward MD (1981) Phytochemistry 20:532–534CrossRefGoogle Scholar
  35. 35.
    Castagnetta LA, Granata OM, Arcuri FP, Polito LM, Rosati F, Cartoni GP (1992) Steroids 57:437–443CrossRefGoogle Scholar
  36. 36.
    Atta ur R, Nasim S, Baig I, Jalil S, Orhan I, Sener B, Choudhary MI (2003) J Ethnopharmacol 86:177–180CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Ronald Maul
    • 1
  • Nils Helge Schebb
    • 2
  • Sabine E. Kulling
    • 3
  1. 1.Institut für Biochemie und LebensmittelchemieUniversität HamburgHamburgGermany
  2. 2.Institut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterMünsterGermany
  3. 3.Lehrstuhl für LebensmittelchemieUniversität PotsdamNuthetalGermany

Personalised recommendations