Analytical and Bioanalytical Chemistry

, Volume 390, Issue 8, pp 2021–2029 | Cite as

Catalytic diesel particulate filters reduce the in vitro estrogenic activity of diesel exhaust

  • Daniela Wenger
  • Andreas C. Gerecke
  • Norbert V. Heeb
  • Hanspeter Naegeli
  • Renato Zenobi
Original Paper


An in vitro reporter gene assay based on human breast cancer T47D cells (ER-CALUX®) was applied to examine the ability of diesel exhaust to induce or inhibit estrogen receptor (ER)-mediated gene expression. Exhaust from a heavy-duty diesel engine was either treated by iron- or copper/iron-catalyzed diesel particulate filters (DPFs) or studied as unfiltered exhaust. Collected samples included particle-bound and semivolatile constituents of diesel exhaust. Our findings show that all of the samples contained compounds that were able to induce ER-mediated gene expression as well as compounds that suppressed the activity of the endogenous hormone 17β-estradiol (E2). Estrogenic activity prevailed over antiestrogenic activity. We found an overall ER-mediated activity of 1.63 ± 0.31 ng E2 CALUX equivalents (E2-CEQs) per m3 of unfiltered exhaust. In filtered exhaust, we measured 0.74 ± 0.07 (iron-catalyzed DPF) and 0.55 ± 0.09 ng E2-CEQ m−3 (copper/iron-catalyzed DPF), corresponding to reductions in estrogenic activity of 55 and 66%, respectively. Our study demonstrates that both catalytic DPFs lowered the ER-mediated endocrine-disrupting potential of diesel exhaust.


Diesel exhaust Diesel particles Diesel particulate filter In vitro reporter gene assay Estrogen receptor Estrogenic activity 



Aryl hydrocarbon receptor


One-way analysis of variance


Chlorine-enriched diesel fuel (14 μg g−1)


Diesel fuel with copper/iron-based fuel additive (9.0/7.5 μg g−1)




Diesel particulate filter






17β-Estradiol CALUX equivalent


Estrogen receptor;


Estrogen Responsive–Chemically Activated LUciferase eXpression


Exhaust treatment by diesel particulate filter


Fetal bovine serum


Diesel fuel with iron-based additive (4.5 μg g−1)


Polychlorinated dibenzodioxins/furans


Reference diesel fuel


Relative standard deviation


Chlorine-enriched diesel fuel (110 μg g−1)



We thank all our collaborators at Empa, BFH-TI Biel, and TTM Niederrohrdorf for providing exhaust samples and know-how. This study was supported by the board of Empa and the Swiss National Science Foundation (NRP50 program, grant no. 40504–104378).

Supplementary material

216_2008_1872_MOESM1_ESM.doc (548 kb)
ESM 1 (DOC 548 kb)


  1. 1.
    van Setten BAAL, Makkee M, Moulijn JA (2001) Catal Rev 43:489–564CrossRefGoogle Scholar
  2. 2.
    Zhu Y, Hinds WC, Kim S, Shen S, Sioutas C (2002) Atmos Environ 36:4323–4335CrossRefGoogle Scholar
  3. 3.
    Heeb NV, Zennegg M, Gujer E, Honegger P, Zeyer K, Gfeller U, Wichser A, Kohler M, Schmid P, Emmenegger L, Ulrich A, Wenger D, Petermann J-L, Czerwinski J, Mosimann T, Kaspar M, Mayer A (2007) Environ Sci Technol 41:5789–5794CrossRefGoogle Scholar
  4. 4.
    Riedl M, Diaz-Sanchez D (2005) J Allergy Clin Immunol 115:221–228CrossRefGoogle Scholar
  5. 5.
    Delfino RJ, Sioutas C, Malik S (2005) Environ Health Perspect 113:934–946CrossRefGoogle Scholar
  6. 6.
    Brüske-Hohlfeld I, Möhner M, Ahrens W, Pohlabeln H, Heinrich J, Kreuzer M, Jöckel K-H, Wichmann H-E (1999) Am J Indust Med 36:405–414CrossRefGoogle Scholar
  7. 7.
    Wenger D, Gerecke AC, Heeb NV, Zennegg M, Kohler M, Naegeli H, Zenobi R (2008) Environ Sci Technol (in press, DOI  10.1021/es071827x)
  8. 8.
    Furuta C, Suzuki AK, Taneda S, Kamata K, Hayashi H, Mori Y, Li CM, Watanabe G, Taya K (2004) Biol Reprod 70:1527–1533CrossRefGoogle Scholar
  9. 9.
    Sidhu S, Gullett B, Striebich R, Klosterman J, Contreras J, DeVito M (2005) Atmos Environ 39:801–811CrossRefGoogle Scholar
  10. 10.
    Colborn T, vom Saal FS, Soto AM (1993) Environ Health Perspect 101:378–384CrossRefGoogle Scholar
  11. 11.
    World Health Organization (WHO), International Labour Organisation (ILO), United Nations Environment Programme (UNEP) (2002) Global assessment of the state-of-the-science of endocrine disruptors. In: T. Damstra, Sue Barlow, Aake Bergman, Robert Kavlock, Glen van der Kraak (eds). International Programme on Chemical Safety (ICPS)Google Scholar
  12. 12.
    Legler J, van den Brink CE, Brouwer A, Murk AJ, Van der Saag PT, Vethaak DA, Van der Burg B (1999) Toxicol Sci 48:55–66CrossRefGoogle Scholar
  13. 13.
    Nilsson S, Mäkelä S, Treuter E, Tujague M, Thomsen J, Andersson G, Enmark E, Pettersson K, Warner M, Gustafsson J-Å (2001) Physiol Rev 81:1535–1565Google Scholar
  14. 14.
    Villeneuve DL, Blankenship AL, Giesy JP (1998) Interactions between environmental xenobiotics and estrogen receptor-mediated responses. In: Denison, MS, Helferich, WG (eds) Toxicant–receptor interactions. Taylor & Francis, Philadelphia, PAGoogle Scholar
  15. 15.
    Howell A, Osborne KC, Morris C, Wakeling AE (2000) Am Cancer Soc 817–825Google Scholar
  16. 16.
    Safe S, Wormke M (2003) Chem Res Toxicol 16:807–816CrossRefGoogle Scholar
  17. 17.
    Meek MD (1998) Environ Res 79:114–121CrossRefGoogle Scholar
  18. 18.
    Okamura K, Kizu R, Toriba A, Klinge CM, Hayakawa K (2002) Polycycl Aromat Comp 22:747–759Google Scholar
  19. 19.
    Wang J, Wu W, Henkelmann B, You L, Kettrup A, Schramm KW (2003) Atmos Environ 37:3225–3235CrossRefGoogle Scholar
  20. 20.
    Watanabe N, Kurita M (2001) Environ Health Perspect 109:111–119CrossRefGoogle Scholar
  21. 21.
    Watanabe N (2005) Toxicol Lett 155:51–58CrossRefGoogle Scholar
  22. 22.
    Takeda K, Naomi T, Yoshida S (2004) Environ Sci 11:033–045Google Scholar
  23. 23.
    Yoshida S, Takeda K (2004) J Health Sci 50:210–214CrossRefGoogle Scholar
  24. 24.
    Ono N, Oshio S, Niwata Y, Yoshida S, Tsukue N, Sugawara I, Takano H, Takeda K (2007) Inhal Tox 19:275–281CrossRefGoogle Scholar
  25. 25.
    Guo J, Kauppinen T, Kyyronen P, Heikkila P, Lindbohm ML, Pukkala F (2004) Int J Cancer 111:286–292CrossRefGoogle Scholar
  26. 26.
    De Rosa M, Zarrilli S, Paesano L, Carbone U, Boggia B, Petretta M, Maisto A, Cimmino F, Puca G, Colao A, Lombardi G (2003) Hum Reprod 18:1055–1061CrossRefGoogle Scholar
  27. 27.
    Schaefer-Sindlinger A, Lappas I, Vogt CD, Ito T, Kurachi H, Makino M, Takahashi A (2007) Top Catal 42–43:307–317Google Scholar
  28. 28.
    Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental organic chemistry. Wiley, Hoboken, NJGoogle Scholar
  29. 29.
    Ulrich A, Wichser A (2003) Anal Bioanal Chem 377:71–81CrossRefGoogle Scholar
  30. 30.
    CEN (1996) European Standard EN 1948-1. European Committee for Standardization (CEN), BrusselsGoogle Scholar
  31. 31.
    Wenger D, Gerecke AC, Heeb NV, Zenobi R (2006) Organohal Comp 68:1295–1298Google Scholar
  32. 32.
    Van Wouwe N, Windal I, Vanderperren H, Eppe G, Xhrouet C, Massart A-C, Debacker N, Sasse A, Baeyens W, De Pauw E, Sartor F, Van Oyen H, Goeyens L (2004) Talanta 63:1157–1167CrossRefGoogle Scholar
  33. 33.
    Martin OV, Lai KM, Scrimshaw MD, Lester JN (2005) Environ Sci Technol 39:5349–5355CrossRefGoogle Scholar
  34. 34.
    Schmidt JV, Bradfield CA (1996) Annu Rev Cell Dev Biol 12:55–89CrossRefGoogle Scholar
  35. 35.
    Clemons JH, Allan LM, Marvin CH, Wu Z, McCarry BE, Bryant DW, Zacharewski TR (1998) Environ Sci Technol 32:1853–1860CrossRefGoogle Scholar
  36. 36.
    Wang J, Xie P, Xu Y, Kettrup A, Schramm K-W (2004) Atmos Environ 38:6157–6166CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Daniela Wenger
    • 1
  • Andreas C. Gerecke
    • 1
  • Norbert V. Heeb
    • 1
  • Hanspeter Naegeli
    • 2
  • Renato Zenobi
    • 3
  1. 1.Laboratory for Analytical Chemistry, Empa, Swiss Federal Laboratories for Materials Testing and ResearchDübendorfSwitzerland
  2. 2.Institute of Pharmacology and ToxicologyUniversity of Zurich-VetsuisseZurichSwitzerland
  3. 3.Department of Chemistry and Applied BiosciencesETH ZurichZurichSwitzerland

Personalised recommendations