Advertisement

Analytical and Bioanalytical Chemistry

, Volume 391, Issue 4, pp 1229–1236 | Cite as

The use of FTIR and NMR spectroscopies to study prepolymerisation interactions in nitrogen heterocycles

  • Qendresa OsmaniEmail author
  • Helen Hughes
  • Kevin Flavin
  • Jimmy Hedin-Dahlstrom
  • Christopher J. Allender
  • June Frisby
  • Peter McLoughlin
Original Paper

Abstract

A detailed investigation into the functional groups responsible for the formation of a noncovalent complex between 2-aminopyridine (template) and methacrylic acid (functional monomer) has been carried out using FTIR spectroscopy and confirmed by 1H NMR spectroscopic data. The approach adopted to confirm the mechanism of interaction was the analysis of the template plus the structurally similar 2-methylaminopyridine and 2-dimethylaminopyridine. A 1:1 stoichiometry of complexation was determined by Job plot analysis following titration, with FTIR results complementing those of the 1H NMR study. The strength of interaction between 2-aminopyridine and the functional monomer measured through band shifts by FTIR spectroscopy was compared with such interactions for the isomers 3- and 4-aminopyridine. This comparison identified a clear correlation between template pK a, degree of interaction and subsequent nonspecific binding in the nonimprinted polymer. Using FTIR spectroscopy it was also possible to observe the effect of temperature on the prepolymerisation solution. IR spectra showed that lower temperatures led to more stabilized interactions of the hydrogen-bonded complex. The potential advantages of FTIR spectroscopy compared with 1H NMR spectroscopy in studying prepolymerisation solutions have been identified.

Keywords

Molecularly imprinted polymers FTIR spectroscopy Template–monomer interaction Hydrogen bond Aminopyridine 

Notes

Acknowledgements

The author gratefully acknowledges the support from the Irish Research Council for Science, Engineering and Technology (IRCSET) under the Embark Initiative. Part of this work is also supported by the European Regional Development Fund (ERDF) INTERREG IIIA Ireland/Wales Programme 2000–2006, under the SWINGS project.

References

  1. 1.
    Haginaka J, Takekira H, Hosoya K, Tanaka N (1999) J Chromatogr A 849:331–339CrossRefGoogle Scholar
  2. 2.
    Yu C, Mosbach K (1997) J Org Chem 62:4057–4064CrossRefGoogle Scholar
  3. 3.
    Ramstrom O, Nicholls IA, Mosbach K (1994) Tetrahedron Asymmetry 5:649–656CrossRefGoogle Scholar
  4. 4.
    Rachkov AE, Cheong SH, El’skaya AV, Yano K, Karube I (1998) Polym Adv Tech 9:511–519CrossRefGoogle Scholar
  5. 5.
    Lavignac N, Allender CJ, Brain KR (2004) Anal Chim Acta 510:139–145CrossRefGoogle Scholar
  6. 6.
    Piletsky SA, Piletska EV, Karim K, Freebairn KW, Legge CH, Turner APF (2002) Macromolecules 35:7499–7504CrossRefGoogle Scholar
  7. 7.
    Nicholls IA, Adbo K, Andersson HS, Andersson PO, Ankarloo J, Hedin-Dahlstrom J, Jokela P, Karlsson JG, Olofsson L, Rosengren J, Shoravi S, Svenson J, Wikman S (2001) Anal Chim Acta 435:9–18CrossRefGoogle Scholar
  8. 8.
    Sellergren B, Lepisto M, Mosbach K (1988) J Am Chem Soc 110:5853–5860CrossRefGoogle Scholar
  9. 9.
    Andersson HS, Nicholls IA (1997) Bioorg Chem 25:203–211CrossRefGoogle Scholar
  10. 10.
    Chalmers JM, Griffiths PR (2002) Handbook of vibrational spectroscopy, sample characterisation and spectral data processing. Wiley, ChichesterGoogle Scholar
  11. 11.
    Duffy DJ, Das K, Hsu SL, Penelle J, Rotello VM, Stidham HD (2002) J Am Chem Soc 124:8290–8296CrossRefGoogle Scholar
  12. 12.
    O’Brien TP, Grinberg N, Bicker G, Wyvratt J, Snow NH (2002) Enantiomer 7:139–148CrossRefGoogle Scholar
  13. 13.
    Molinelli A, O’Mahony J, Nolan K, Smyth MR, Jakusch M, Mizaikoff B (2005) Anal Chem 77:5196–5204CrossRefGoogle Scholar
  14. 14.
    Cummins W, Duggan P, McLoughlin P (2006) Biosens Bioelectron 22:372–380CrossRefGoogle Scholar
  15. 15.
    Arnaudov MG (2001) Int J Vibr Spec 5:5Google Scholar
  16. 16.
    Nakanishi K, Solomon PH (1977) Infrared absorption spectroscopy. Holden-day, San FranciscoGoogle Scholar
  17. 17.
    Zhou J, He XW (1999) Anal Chim Acta 381:85–91CrossRefGoogle Scholar
  18. 18.
    Inuzuka K, Fujimoto A (1990) B Chem Soc Japan 63:971–975CrossRefGoogle Scholar
  19. 19.
    Bruyneel C, Zeegers-Huyskens T (2000) J Mol Struc 552:177–185CrossRefGoogle Scholar
  20. 20.
    O’Shannessy DJ, Ekberg B, Mosbach K (1989) Anal Biochem 177:144–149CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Qendresa Osmani
    • 1
    Email author
  • Helen Hughes
    • 1
  • Kevin Flavin
    • 2
  • Jimmy Hedin-Dahlstrom
    • 3
  • Christopher J. Allender
    • 3
  • June Frisby
    • 1
  • Peter McLoughlin
    • 1
  1. 1.Department of Chemical and Life SciencesWaterford Institute of TechnologyWaterfordIreland
  2. 2.School of Biological and Chemical SciencesQueen Mary, University of LondonLondonUK
  3. 3.Molecular Recognition Research Unit, Welsh School of PharmacyCardiff UniversityCardiffUK

Personalised recommendations