Advertisement

Analytical and Bioanalytical Chemistry

, Volume 390, Issue 6, pp 1595–1603 | Cite as

Binding of hairpin polyamides to DNA studied by fluorescence correlation spectroscopy for DNA nanoarchitectures

  • Chayan K. Nandi
  • Partha P. Parui
  • Thorsten L. Schmidt
  • Alexander Heckel
  • Bernhard Brutschy
Original Paper

Abstract

We have recently constructed a “DNA strut” consisting of two DNA-binding hairpin polyamides of Dervan-type connected via a long flexible linker and were able to show that this strut can be used to sequence-selectively connect DNA helices. This approach provides a second structural element (besides the Watson–Crick base pairing) for the assembly of higher-order DNA nanoarchitectures from smaller DNA building blocks. Since none of the existing analytical techniques for studying this kind of system were found suitable for detection and quantification of the formation of the resulting complexes, we chose fluorescence correlation spectroscopy (FCS). In the present study we show that FCS allowed us in a versatile and fast way to investigate the binding of Dervan polyamides to DNA. In particular it also shows its power in the quantitative detection of the formation of multimeric complexes and the in investigation of binding under nonphysiological conditions.

Keywords

Fluorescence correlation spectroscopy DNA-binding polyamides DNA nanoarchitectures Single molecule spectroscopy Multimeric complexes 

Notes

Acknowledgements

CKN is grateful for a scholarship from the Alexander von Humboldt-Foundation. This work was supported by the DFG (SFB 624, SFB 579 and Cluster of Excellence “Macromolecular Complexes” EXC115).

Supplementary material

216_2008_1852_MOESM1_ESM.doc (439 kb)
ESM 1 (DOC 439 kb)

References

  1. 1.
    Seeman NC (2003) Nature 421:427–431CrossRefGoogle Scholar
  2. 2.
    Feldkamp U, Niemeyer CM (2006) Angew Chem Int Ed 45:1856–1876CrossRefGoogle Scholar
  3. 3.
    Smith WM, Quispe JD, Joyce GF (2004) Nature 427:618–621CrossRefGoogle Scholar
  4. 4.
    Liu D, Park SH, Reif JH, LaBean TH (2004) Proc Natl Acad Sci USA 101:717–722CrossRefGoogle Scholar
  5. 5.
    Rothemund PWK (2006) Nature 440:297–302CrossRefGoogle Scholar
  6. 6.
    Liu Y, West SC (2004) Nat Rev Mol Cell Biol 5:937–946CrossRefGoogle Scholar
  7. 7.
    Fu T, Seeman NC (1993) Biochemistry 32:3211–3220CrossRefGoogle Scholar
  8. 8.
    Dervan PB (2001) Bioorg Med Chem 9:2215–2235CrossRefGoogle Scholar
  9. 9.
    Dervan PB, Edelson BS (2003) Curr Opin Struct Biol 13:284–299CrossRefGoogle Scholar
  10. 10.
    Schmidt TL, Nandi CK, Rasched G, Parui PP, Brutschy B, Famulok M, Heckel A (2007) Angew Chem Int Ed 46:4382–4384CrossRefGoogle Scholar
  11. 11.
    Trauger JW, Dervan PB (2001) Methods Enzymol 340:450–466Google Scholar
  12. 12.
    Boger DL, Fink BE, Brunette SR, Tse WC, Hedrick MP (2001) J Am Chem Soc 123:5878–5891CrossRefGoogle Scholar
  13. 13.
    Schwille P, Meyer-Almes FJ, Rigler R (1997) Biophys J 72:1878–1886Google Scholar
  14. 14.
    Berland KM, So PT, Gratton E (1995) Biophys J 68:694–701CrossRefGoogle Scholar
  15. 15.
    Hess ST, Huang S, Heikal AA, Webb WW (2002) Biochemistry 41:697–705CrossRefGoogle Scholar
  16. 16.
    Magde D, Elson E, Webb WW (1972) Phys Rev Lett 29:705–708CrossRefGoogle Scholar
  17. 17.
    Elson E, Magde D (1974) Biopolymers 13:1–27CrossRefGoogle Scholar
  18. 18.
    Schwille P, Bieschke J, Oehlenschlager F (1997) Biophys Chem 66:211–228CrossRefGoogle Scholar
  19. 19.
    Weiss S (1999) Science 283:1676–1683CrossRefGoogle Scholar
  20. 20.
    Meseth U, Wohland T, Rigler R, Vogel H (1999) Biophys J 76:1619–1631Google Scholar
  21. 21.
    Carl Zeiss Advanced Imaging Microscopy (2001) Applications manual LSM 510—Confocor 2 fluorescence correlation spectroscopy. Carl Zeiss, JenaGoogle Scholar
  22. 22.
    Bacia K, Schwille P (2003) Methods 29:74–85CrossRefGoogle Scholar
  23. 23.
    Baird EE, Dervan PB (1996) J Am Chem Soc 118:6141–6146CrossRefGoogle Scholar
  24. 24.
    Oyama R, Takashima H, Yonezawa M, Doi N, Miyamoto-Sato E, Kinjo M, Yanagwa H (2006) Nucleic Acids Res 34:e102CrossRefGoogle Scholar
  25. 25.
    Bacia K, Majoul IR, Schwille P (2002) Biophys J 83:1184–1193Google Scholar
  26. 26.
    Doi N, Takashima H, Kinjo M, Sakata K, Kawahashi Y, Oishi Y, Oyama R, Miyamoto-Sato E, Sawasaki T, Endo Y, Yanagawa H (2002) Genome Res 12:487–492CrossRefGoogle Scholar
  27. 27.
    Rucker VC, Foister S, Melander C, Dervan PB (2003) J Am Chem Soc 125:1195–1202CrossRefGoogle Scholar
  28. 28.
    Maeshima K, Janssen S, Laemmli UK (2001) EMBO J 20:3218–3228CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute for Physical and Theoretical ChemistryUniversity of FrankfurtFrankfurtGermany
  2. 2.Cluster of Excellence Macromolecular Complexes, c/o Institute for Organic Chemistry and Chemical BiologyUniversity of FrankfurtFrankfurtGermany

Personalised recommendations