Analytical and Bioanalytical Chemistry

, Volume 391, Issue 4, pp 1361–1370 | Cite as

Analytical diagnosis methodology to evaluate nitrate impact on historical building materials

  • M. Maguregui
  • A. Sarmiento
  • I. Martínez-Arkarazo
  • M. Angulo
  • K. Castro
  • G. Arana
  • N. Etxebarria
  • J. M. Madariaga
Original Paper


Nitrate salts have become of greater importance in the decay of materials from historical buildings due to changes in the environment. This work presents an analytical diagnosis methodology to evaluate the impact of nitrate salts in mortars and bricks, combining noninvasive and microdestructive analytical techniques together with chemometric and thermodynamic data analyses. The impact of nitrate salts cannot be well ascertained if other soluble salts are not taken into account. Therefore, the principal results from this work relate to nitrate salts but some results for other kinds of salts are included. Data from Raman microprobe spectroscopy and micro X-ray fluorescence (μ-XRF) are used to characterise the original composition and a first approximation of the nature of the decay compounds, mainly nitrates. The soluble salts are extracted and the anions and cations are quantified by means of ion chromatography with conductimetric detection for anions/cations and inductively coupled plasma mass spectrometry (ICP/MS) for cations. The values obtained allow two different data treatments to be applied. First, chemometric analysis is carried out to search for correlations among anions and cations. Second, thermodynamic modelling with the RUNSALT program is performed to search for environmental conditions of soluble salt formation. All the results are finally used to diagnose the impact of nitrates.


Mortar Brick Raman microprobre Micro X-ray fluorescence Ion chromatography 



M. Maguregui gratefully acknowledges her predoctoral fellowship from the University of the Basque Country and A.Sarmiento and Dr. K.Castro are grateful to the Ministry of Education and Science (MEC) for his FPU grant and contract at the UPV/EHU (PTA 2003-02-0050) respectively. This work has been partially funded by the project DILICO (CTQ2005-09267-C02-01/PPQ).


  1. 1.
    Rodríguez-Navarro C, Sebastian E (1996) Sci Total Environ 187:79–91CrossRefGoogle Scholar
  2. 2.
    Price CA (1996) Stone conservation. An overview of current research. The Getty Conservation Institute, ISBN 0-89236-389-4Google Scholar
  3. 3.
    Benavente D, García del Cura MA, García-Guinea J, Sánchez-Moral S, Ordóñez S (2004) J Cryst Growth 260:532–544CrossRefGoogle Scholar
  4. 4.
    Zappia G, Sabbioni C, Riontino C, Gobbi G, Favoni O (1998) Sci Total Environ 224:235–244CrossRefGoogle Scholar
  5. 5.
    Bravo H, Soto AR, Sosa ER, Sánchez AP, Alarcón JAL, Kahl J, Ruíz BJ (2006) Environ Pollut 144:655–660CrossRefGoogle Scholar
  6. 6.
    Zhou Y, Lau H, Watt D, Colston B (2000) Build Environ 35:737–749CrossRefGoogle Scholar
  7. 7.
    Charola AE, Ware R (2002) Geol Soc Special Publ 205:393–406Google Scholar
  8. 8.
    Allen GC, El-Turki A, Hallam KR, McLaughlin D, Stacey M (2000) Br Corros J 35:35–38CrossRefGoogle Scholar
  9. 9.
    Pérez-Alonso, Castro K, Álvarez M, Madariaga JM (2004) Anal Chim Acta 524:379–389CrossRefGoogle Scholar
  10. 10.
    Klenz Larsen P (2007) Environ Geol 52:375–383CrossRefGoogle Scholar
  11. 11.
    Environment, Health and Safety Online. Accessed 14 Oct 2007
  12. 12.
    Van Aardenne JA, Carmichael GR, Levy H II, Streets D, Hordijk L (1999) Atmos Environ 33:633–646CrossRefGoogle Scholar
  13. 13.
    Johannson LG, Lindqvist O, Mangio RE (1988) Durab Build Mater 5:2963–2974Google Scholar
  14. 14.
    Bai Y, Thompson GE, Martinez-Ramirez S (2006) Build Environ 41:486–491CrossRefGoogle Scholar
  15. 15.
    Charola AE (2000) J Am Inst Conserva 39(3), Article 2Google Scholar
  16. 16.
    Moreno F, Vilela SAG, Ângela Sandra GA, Alves CAS (2006) J Cult Herit 7:56–66CrossRefGoogle Scholar
  17. 17.
    Torroca G (1988) Porous building materials, materials science of architectural conservation. ICCROM, RomeGoogle Scholar
  18. 18.
    Alvarez JI, Navarro I, Martín A, García Casado PJ (2000) Cem Concr Res 30:1413–1419CrossRefGoogle Scholar
  19. 19.
    Cultrone G, Sidraba I, Sebastián E (2005) Appl Clay Sci 28:297–308CrossRefGoogle Scholar
  20. 20.
    Rampazzi L, Budini R (2006) e-Preservation Sci 3:21–26Google Scholar
  21. 21.
    İpekoĝlu B, Böke Çizer Ö (2007) Build Environ 42:970–978CrossRefGoogle Scholar
  22. 22.
    Vélosa AL, Coroado J, Veiga MR, Rocha (2007) Mater Charact 58:1208–1216CrossRefGoogle Scholar
  23. 23.
    Pérez-Alonso M, Castro K, Martínez-Arkarazo I, Angulo M, Olazábal MA, Madariaga JM (2004) Anal Bioanal Chem 379:42–50CrossRefGoogle Scholar
  24. 24.
    Castro K, Pérez-Alonso M, Rodriguez-Laso MD, Fernandez LA, Madariaga JM (2005) Anal Bioanal Chem 382:248–258CrossRefGoogle Scholar
  25. 25.
    Martínez-Arkarazo I, Angulo M, Bartolome L, Etxebarria N, Olazabal MA, Madariaga JM (2007) Anal Chim Acta 584:350–359CrossRefGoogle Scholar
  26. 26.
    Borges C, Caetano C, Costa Pessoa J, Figueiredo MO, Lourenço A, Malhoa Gomes M, Silva TP, Veiga JP (1997) J Chromatogr A 770:195–201CrossRefGoogle Scholar
  27. 27.
    Sabbioni C, Zappia G, Riontino C, Blanco Varela MT, Aguilera J, Puertas F, Van Balen K, Toumbakari EE (2001) Atmos Environ 35:539–548CrossRefGoogle Scholar
  28. 28.
    Price CA (2000) An expert chemical model for determining the environmental conditions needed to prevent salt damage in porous materials. European Commission. Protection and Conservation of European Cultural Heritage. Research Report 11. Archetype, LondonGoogle Scholar
  29. 29.
    Asa C (2005) The Unscrambler®. Trodheim, NorwayGoogle Scholar
  30. 30.
    NORMAL 13/83 Method: Dossagio dei Sali Solubili, CNR (Centri Di Studio Di Milano e Roma Sulle Cause Di Deperimento e Sui Metodi Di Conservazione Delle Opere D’arte) (1983) ICR (Instituto Centrale Del Restauro.), RomaGoogle Scholar
  31. 31.
    Maguregui M, Sarmiento A, Martínez-Arkarazo I, Fernández S, Angulo M, Castro K, Usobiaga A, Madariaga JM (2007) IX international symposium on analitical methodology in the environmental field. Pollensa, Mallorca, October 2–5Google Scholar
  32. 32.
    Pitzer KS (1973) J Phys Chem 77:268–277CrossRefGoogle Scholar
  33. 33.
    Monaci F, Moni F, Lanciotti E, Grechi D, Bargagli R (2000) Environ Pollut 107:321–327CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • M. Maguregui
    • 1
  • A. Sarmiento
    • 1
  • I. Martínez-Arkarazo
    • 1
  • M. Angulo
    • 1
  • K. Castro
    • 1
  • G. Arana
    • 1
  • N. Etxebarria
    • 1
  • J. M. Madariaga
    • 1
  1. 1.Department of Analytical ChemistryUniversity of the Basque CountryBilbaoSpain

Personalised recommendations