Analytical and Bioanalytical Chemistry

, Volume 391, Issue 5, pp 1485–1498 | Cite as

The good, the bad, and the tiny: a review of microflow cytometry

  • Daniel A. Ateya
  • Jeffrey S. Erickson
  • Peter B. HowellJr
  • Lisa R. Hilliard
  • Joel P. Golden
  • Frances S. Ligler


Recent developments in microflow cytometry have concentrated on advancing technology in four main areas: (1) focusing the particles to be analyzed in the microfluidic channel, (2) miniaturization of the fluid-handling components, (3) miniaturization of the optics, and (4) integration and applications development. Strategies for focusing particles in a narrow path as they pass through the detection region include the use of focusing fluids, nozzles, and dielectrophoresis. Strategies for optics range from the use of microscope objectives to polymer waveguides or optical fibers embedded on-chip. While most investigators use off-chip fluidic control, there are a few examples of integrated valves and pumps. To date, demonstrations of applications are primarily used to establish that the microflow systems provide data of the same quality as laboratory systems, but new capabilities—such as automated sample staining—are beginning to emerge. Each of these four areas is discussed in detail in terms of the progress of development, the continuing limitations, and potential future directions for microflow cytometers.


Flow cytometry Microfluidics Fluid focusing Integrated optics Cell sorter 



The preparation of this manuscript was supported by NRL/ONR 6.2 Work Unit 6006. DAA and LRH are National Research Council Postdoctoral Fellows. The views are those of the authors and do not reflect policy or opinion of the US Navy or Department of Defense.


  1. 1.
    Crosland-Taylor PJ (1953) Nature 171:37–38CrossRefGoogle Scholar
  2. 2.
    Steinkam J, Fulwyler MJ, Coulter JR, Hiebert RD, Horney JL, Mullaney PF (1973) Rev Sci Instrum 44:1301–1310CrossRefGoogle Scholar
  3. 3.
    Blankenstein G, Larsen UD (1998) Biosens Bioelectron 13:427–438CrossRefGoogle Scholar
  4. 4.
    Dubelaar GBJ, Geerders PJF, Jonker RR (2004) J Environ Monit 6:946–952CrossRefGoogle Scholar
  5. 5.
    Oh KW, Ahn CH (2006) J Micromechanics Microengineering 16:R13–R39CrossRefGoogle Scholar
  6. 6.
    Atencia J, Beebe DJ (2006) Lab Chip 6:567–574CrossRefGoogle Scholar
  7. 7.
    McClain MA, Culbertson CT, Jacobson SC, Allbritton NL, Sims CE, Ramsey JM (2003) Anal Chem 75:5646–5655CrossRefGoogle Scholar
  8. 8.
    Wang Z, El-Ali J, Engelund M, Gotsaed T, Perch-Nielsen IR, Mogensen KB, Snakenborg D, Kutter JP, Wolff A (2004) Lab Chip 4:372–377CrossRefGoogle Scholar
  9. 9.
    Wolff A, Perch-Nielsen IR, Larsen UD, Friis P, Goranovic G, Poulsen CR, Kutter JP, Telleman P (2003) Lab Chip 3:22–27CrossRefGoogle Scholar
  10. 10.
    Inatomi KI, Izuo SI, Lee SS (2006) Lett Appl Microbiol 43:296–300CrossRefGoogle Scholar
  11. 11.
    Kruger J, Singh K, O’Neill A, Jackson C, Morrison A, O’Brien P (2002) J Micromechanics Microengineering 12:486–494CrossRefGoogle Scholar
  12. 12.
    Lancaster C, Kokoris A, Nabavi M, Clemmens J, Maloney P, Capadanno J, Gerdes J, Battrell CF (2005) Methods 37:120–127CrossRefGoogle Scholar
  13. 13.
    Bernini R, De Nuccio E, Brescia F, Minardo A, Zeni L, Sarro PM, Palumbo R, Scarfi MR (2006) Anal Bioanal Chem 386:1267–1272CrossRefGoogle Scholar
  14. 14.
    Stiles T, Fallon R, Vestad T, Oakey J, Marr DWM, Squier J, Jimenez R (2005) Microfluidics and Nanofluidics 1:280–283CrossRefGoogle Scholar
  15. 15.
    Sun Y, Yin XF (2006) J Chromatogr A 1117:228–233CrossRefGoogle Scholar
  16. 16.
    Yao B, Luo GA, Feng X, Wang W, Chen LX, Wang YM (2004) Lab Chip 4:603–607CrossRefGoogle Scholar
  17. 17.
    Simonnet C, Groisman A (2006) Anal Chem 78:5653–5663CrossRefGoogle Scholar
  18. 18.
    Fu AY, Chou HP, Spence C, Arnold FH, Quake SR (2002) Anal Chem 74:2451–2457CrossRefGoogle Scholar
  19. 19.
    Yang SY, Hsiung SK, Hung YC, Chang CM, Liao TL, Lee GB (2006) Meas Sci Technol 17:2001–2009CrossRefGoogle Scholar
  20. 20.
    Wang C-H, Lee G-B (2006) J Micromechanics Microengineering 16:341–348.CrossRefGoogle Scholar
  21. 21.
    Xuan XC, Li DQ (2005) Electrophor 26:3552–3560CrossRefGoogle Scholar
  22. 22.
    Yang RJ, Chang CC, Huang SB, Lee GB (2005) J Micromechanics and Microengineering 15:2141–2148CrossRefGoogle Scholar
  23. 23.
    Jacobson SC, Ramsey JM (1997) Anal Chem 69:3212–3217CrossRefGoogle Scholar
  24. 24.
    Lee GB, Chang CC, Huang SB, Yang RJ (2006) J Micromechanics and Microengineering 16:1024–1032CrossRefGoogle Scholar
  25. 25.
    McClain MA, Culbertson CT, Jacobson SC, Ramsey JM (2001) Anal Chem 73:5334–5338CrossRefGoogle Scholar
  26. 26.
    Krishnamoorthy S, Feng J, Henry AC, Locascio LE, Hickman JJ, Sundaram S (2006) Microfluidics and Nanofluidics 2:345–355CrossRefGoogle Scholar
  27. 27.
    Eyal S, Quake SR (2002) Electrophor 23:2653–2657CrossRefGoogle Scholar
  28. 28.
    Munyan JW, Fuentes HV, Draper M, Kelly RT, Woolley AT (2003) Lab Chip 3:217–220CrossRefGoogle Scholar
  29. 29.
    Singh K, Su XT, Liu CG, Capjack C, Rozmus W, Backhouse CJ (2006) Cytometry Part A 69A:307–315CrossRefGoogle Scholar
  30. 30.
    Gawad S, Schild L, Renaud P (2001) Lab Chip 1:76–82CrossRefGoogle Scholar
  31. 31.
    Fu AY, Spence C, Scherer A, Arnold FH, Quake SR (1999) Nature Biotechnol 17:1109–1111CrossRefGoogle Scholar
  32. 32.
    Lien V, Zhao K, Berdichevsky Y, Lo YH (2005) IEEE J Sel Top Quantum Electron 11:827–834CrossRefGoogle Scholar
  33. 33.
    Stavis SM, Edel JB, Samiee KT, Craighead HG (2005) Lab Chip 5:337–343CrossRefGoogle Scholar
  34. 34.
    Xiang Q, Xuan XC, Xu B, Li, DQ (2005) Instrum Sci Technol 33:597–607CrossRefGoogle Scholar
  35. 35.
    Godin J, Lien V, Lo YH (2006) Appl Phys Lett 89Google Scholar
  36. 36.
    Perry H, Greiner C, Georgakoudi I, Cronin-Golomb M, Omenetto FG (2007) Rev Sci Instrum 78Google Scholar
  37. 37.
    Wood DK, Braun GB, Fraikin JL, Swenson LJ, Reich NO, Cleland AN (2007) Lab Chip 7:469–474CrossRefGoogle Scholar
  38. 38.
    Tung YC, Zhang M, Lin CT, Kurabayashi K, Skerlos SJ (2004) Sens Actuators, B, Chem 98:356–367CrossRefGoogle Scholar
  39. 39.
    Dittrich PS, Schwille P (2003) Anal Chem 75:5767–5774CrossRefGoogle Scholar
  40. 40.
    Li PCH, Harrison DJ (1997) Anal Chem 69:1564–1568CrossRefGoogle Scholar
  41. 41.
    Schrum DP, Culbertson CT, Jacobson SC, Ramsey JM (1999) Anal Chem 71:4173–4177CrossRefGoogle Scholar
  42. 42.
    Sundararajan N, Pio MS, Lee LP, Berlin AA (2004) J Microelectromechanical Syst 13:559–567CrossRefGoogle Scholar
  43. 43.
    Blankenstein G, Scampavia LD, Ruzicka J, Christian GD (1996) Cytometry 25:200–204CrossRefGoogle Scholar
  44. 44.
    Lee GB, Lin CH, Chang GL (2003) Sens Actuators A, Phys 103:165–170CrossRefGoogle Scholar
  45. 45.
    Pamme N, Koyama R, Manz A (2003) Lab Chip 3:187–192CrossRefGoogle Scholar
  46. 46.
    Chung S, Park SJ, Kim JK, Chung C, Han DC, Chang JK (2003) Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems 9:525–533Google Scholar
  47. 47.
    Fu LM, Yang RJ, Lin CH, Pan YJ, Lee GB (2004) Anal Chim Acta 507:163–169CrossRefGoogle Scholar
  48. 48.
    Huh D, Gu W, Kamotani Y, Grotberg JB, Takayama S (2005) Physiol Meas 26:R73–R98CrossRefGoogle Scholar
  49. 49.
    Simonnet C, Groisman A (2005) Appl Phys Lett 87Google Scholar
  50. 50.
    Chang CC, Huang ZX, Yang RJ (2007) J Micromechanics and Microengineering 17:1479–1486CrossRefGoogle Scholar
  51. 51.
    Klank H, Goranovic G, Kutter JP, Gjelstrup H, Michelsen J, Westergaard CH (2002) J Micromechanics and Microengineering 12:862–869CrossRefGoogle Scholar
  52. 52.
    Yang R, Feeback DL, Wang WJ (2005) Sens Actuators A, Phys 118:259–267CrossRefGoogle Scholar
  53. 53.
    Goranovic G, Perch-Nielson IR, Larsen UD, Wolff A, Kutter JP, Telleman P (2001) In Modeling and Simulation of MicrosystemsGoogle Scholar
  54. 54.
    Bang HW, Yun HY, Lee WG, Park J, Lee J, Chung S, Cho K, Chung C, Han DC, Chang JK (2006) Lab Chip 6:1381–1383CrossRefGoogle Scholar
  55. 55.
    Lin CH, Lee GB, Fu LM, Hwey BH (2004) J Microelectromechanical Systems 13:923–932CrossRefGoogle Scholar
  56. 56.
    Holmes D, Morgan H, Green NG (2006) Biosensors Bioelectronics 21:1621–1630CrossRefGoogle Scholar
  57. 57.
    Mogensen KB, Petersen NJ, Hubner J, Kutter JR (2001) Electrophor 22:3930–3938CrossRefGoogle Scholar
  58. 58.
    Verpoorte E (2003) Lab Chip 3:42N–52NCrossRefGoogle Scholar
  59. 59.
    Wu MH, Wang JB, Taha T, Cui ZF, Urban JPG, Cui Z (2007) Biomedical Microdevices 9:167–174CrossRefGoogle Scholar
  60. 60.
    Lien V (2006) IEEE Photonics Technol Lett 16:1525–1527CrossRefGoogle Scholar
  61. 61.
    Chang-Yen DA, Eich RK, Gale BK (2005) J Lightwave Technol 23:2088CrossRefGoogle Scholar
  62. 62.
    Friis P, Hoppe K, Leistiko O, Mogensen KB, Hübner J, Kutter JP (2001) Appl Opt 40:6246–6251CrossRefGoogle Scholar
  63. 63.
    Ruano JM, Benoit V, Aitchison JS, Cooper JM (2000) Anal Chem 72:1093–1097CrossRefGoogle Scholar
  64. 64.
    Ladouceur F (1997) J Lightwave Technol 15:1020–1025CrossRefGoogle Scholar
  65. 65.
    Grewe M, Grosse A, Fouckhardt H (2000) Appl Phys B-Lasers and Optics 70:839–847Google Scholar
  66. 66.
    Said AA, Dugan M, Bado P, Bellouard Y, Scott A, Mabesa JJR (2004) in Photon Processing in Microelectronics and Photonics III 5339:194–204, SPIE, San Jose, Ca, USAGoogle Scholar
  67. 67.
    Kamei T, Paegel BM, Scherer JR, Skelley AM, Street RA, Mathies RA (2003) Anal Chem 75:5300–5305CrossRefGoogle Scholar
  68. 68.
    Chen CH, Tsai F, Lien V, Justis N, Lo YH (2007) IEEE Photonics Technol Lett 19:441–443CrossRefGoogle Scholar
  69. 69.
    Nieuwenhuis JH, Bastemeijer J, Bossche A, Vellekoop MJ (2003) IEEE Sens J 3:646–651CrossRefGoogle Scholar
  70. 70.
    Hartley L, Kaler K, Yadid-Pecht O (2007) IEEE Trans Circuits Syst I-Regular Papers 54:99–110CrossRefGoogle Scholar
  71. 71.
    Camou S, Fujita H, Fujii T (2003) Lab Chip 3:40–45CrossRefGoogle Scholar
  72. 72.
    Kuo JN, Hsieh CC, Yang SY, Lee GB (2007) J Micromechanics and Microengineering 17:693–699CrossRefGoogle Scholar
  73. 73.
    Traut S, Rossi M, Herzig HP (2000) J Mod Opt 47:2391–2397Google Scholar
  74. 74.
    Nussbaum P, Philipoussis I, Husser A, Herzig HP (1998) Opt Eng 37:1804–1808CrossRefGoogle Scholar
  75. 75.
    Novak L, Neuzil P, Pipper J, Zhang Y, Lee S (2007) Lab Chip 7:27–29CrossRefGoogle Scholar
  76. 76.
    Balslev S, Jorgensen AM, Bilenberg B, Mogensen KB, Snakenborg D, Geschke O, Kutter JP, Kristensen A (2006) Lab Chip 6:213–217CrossRefGoogle Scholar
  77. 77.
    Hofmann O, Wang X, Cornwell A, Beecher S, Raja A, Bradley DD, Demello AJ, Demello JC (2006) Lab Chip 6:981–987CrossRefGoogle Scholar
  78. 78.
    Burns MA, Johnson BN, Brahmasandra SN, Handique K, Webster JR, Krishnan M, Sammarco TS, Man PM, Jones D, Heldsinger D, Mastrangelo CH, Burke DT (1998) Science 282:484–487CrossRefGoogle Scholar
  79. 79.
    Adams ML, Enzelberger M, Quake S, Scherer A (2003) Sens Actuators A-Phys 104:25–31CrossRefGoogle Scholar
  80. 80.
    Chediak JA, Luo ZS, Seo JG, Cheung N, Lee LP, Sands TD (2004) Sens Actuators A-Phys 111:1–7CrossRefGoogle Scholar
  81. 81.
    Snow C (2004) Cytom Part A 57A:63–69CrossRefGoogle Scholar
  82. 82.
    Cheung K, Gawad S, Renaud P (2005) Cytom Part A 65A:124–132CrossRefGoogle Scholar
  83. 83.
    Chun HG, Chung TD, Kim HC (2005) Anal Chem 77:2490–2495CrossRefGoogle Scholar
  84. 84.
    Sims CE, Allbritton NL (2007) Lab Chip 7:423–440CrossRefGoogle Scholar
  85. 85.
    Chen X, Cui DF, Liu CC, Li H, Chen J (2007) Anal Chim Acta 584:237–243CrossRefGoogle Scholar
  86. 86.
    Thorslund S, Klett O, Nikolajeff F, Markides K, Bergquist J (2006) Biomedical Microdevices 8:73–79CrossRefGoogle Scholar
  87. 87.
    Chang CM, Hsiung SK, Lee GB (2007) Jpn J Appl Phys 46:3126–3134Google Scholar
  88. 88.
    Preckel T, Luedke G, Chan SDH, Wang BN, Dubrow R, Buhlmann C (2002) J Assoc Lab Autom 7:85–89CrossRefGoogle Scholar
  89. 89.
    Chan SDH, Luedke G, Valer M, Buhlmann C, Preckel T (2003) Cytom Part A 55A:119–125CrossRefGoogle Scholar
  90. 90.
    Yamaguchi N, Ohba H, Nasu M (2006) Lett Appl Microbiol 43:631–636CrossRefGoogle Scholar
  91. 91.
    Gerdts G, Luedke G (2006) J Microbiological Methods 64:232–240CrossRefGoogle Scholar
  92. 92.
    Wang MM, Tu E, Raymond DE, Yang JM, Zhang HC, Hagen N, Dees B, Mercer EM, Forster AH, Kariv I, Marchand PJ, Butler WF (2005) Nature Biotechnol 23:83–87CrossRefGoogle Scholar
  93. 93.
    Sakamoto C, Yamaguchi N, Yamada M, Nagase H, Seki M, Nasu M (2007) J Microbiological Methods 68:643–647CrossRefGoogle Scholar

Copyright information

© U.S. Government 2008

Authors and Affiliations

  • Daniel A. Ateya
    • 1
  • Jeffrey S. Erickson
    • 1
  • Peter B. HowellJr
    • 1
  • Lisa R. Hilliard
    • 1
  • Joel P. Golden
    • 1
  • Frances S. Ligler
    • 1
  1. 1.Center for Bio/Molecular Science and EngineeringNaval Research LaboratoryWashingtonUSA

Personalised recommendations