Skip to main content
Log in

Quantitation of bacteria through adsorption of intracellular biomolecules on carbon paste and screen-printed carbon electrodes and voltammetry of redox-active probes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new electrochemical method for the quantitation of bacteria that is rapid, inexpensive, and amenable to miniaturization is reported. Cyclic voltammetry was used to quantitate M. luteus, C. sporogenes, and E. coli JM105 in exponential and stationary phases, following exposure of screen-printed carbon working electrodes (SPCEs) to lysed culture samples. Ferricyanide was used as a probe. The detection limits (3s) were calculated and the dynamic ranges for E. coli (exponential and stationary phases), M. luteus (exponential and stationary phases), and C. sporogenes (exponential phase) lysed by lysozyme were 3 × 104 to 5 × 106 colony-forming units (CFU) mL−1, 5 × 106 to 2 × 108 CFU mL−1 and 3 × 103 to 3 × 105 CFU mL−1, respectively. Good overlap was obtained between the calibration curves when the electrochemical signal was plotted against the dry bacterial weight, or between the protein concentration in the bacterial lysate. In contrast, unlysed bacteria did not change the electrochemical signal of ferricyanide. The results indicate that the reduction of the electrochemical signal in the presence of the lysate is mainly due to the fouling of the electrode by proteins. Similar results were obtained with carbon-paste electrodes although detection limits were better with SPCEs. The method described herein was applied to quantitation of bacteria in a cooling tower water sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Postgate JR (1969) Methods Microbiol 1:611–628

    Article  Google Scholar 

  2. Rompré A, Servais P, Baudart J, de-Roubin, M-R, Laurent P (2002) J Microbiol Methods 49:31–54

    Article  Google Scholar 

  3. Hafner F (2000) Biosens Bioelectron 15:149–158

    Article  CAS  Google Scholar 

  4. Lorenzelli L, Margesin B, Martinoia S, Tedesco MT, Valle M (2003) Biosens Bioelectron 18:621–626

    Article  CAS  Google Scholar 

  5. Richards JCS, Jason AC, Hobbs G, Gibson DM, Christie RH (1978) J Phys 11:560–568

    CAS  Google Scholar 

  6. Iijima S, Yamashita S, Matsunaga K, Miura H, Morikawa M (1987) J Chem Technol Biotechnol 40:203–213

    CAS  Google Scholar 

  7. Ortmanis A, Patterson WI, Neufeld RJ (1991) Enzyme Microb Technol 13:450–455

    Article  CAS  Google Scholar 

  8. Karl D (1980) Microbiol Rev 44:739–796

    CAS  Google Scholar 

  9. Venkateswaran K, Hattori N, La Duc MT, Kern R (2003) J Microbiol Methods 52:367–377

    Article  CAS  Google Scholar 

  10. Selan L, Berlutti F, Passariello C, Thaller MC, Renzini G (1992) J Clin Microbiol 30:1739–1742

    CAS  Google Scholar 

  11. La Duc MT, Kern R, Venkateswaran K (2004) Microb Ecol 47:150–158

    Article  Google Scholar 

  12. Seydel JK, Wempe E (1980) Drug Res 30:298–301

    CAS  Google Scholar 

  13. Delanghe JR, Kouri TT, Huber AR, Hannemann-Pohl K, Guder WG, Lun A, Sinha P, Stamminger G, Beier L (2000) Clin Chim Acta 301:1–18

    Article  CAS  Google Scholar 

  14. Lyons SR, Griffen AL, Leys EJ (2000) J Clin Microbiol 38:2362–2365

    CAS  Google Scholar 

  15. Bach H-J, Tomanova J, Schloter M, Munch JC (2002) J Microbiol Methods 49:235–245

    Article  CAS  Google Scholar 

  16. Créach V, Baudoux, A-C, Bertru G, Le Rouzic B (2003) J Microbiol Methods 52:19–28

    Article  Google Scholar 

  17. Turner APF, Ramsey G, Higgins IJH (1983) Biochem Soc Trans 11:445–448

    CAS  Google Scholar 

  18. Pérez FG, Mascini M, Tothill IE, Turner APF (1998) Anal Chem 70:2380–2386

    Article  Google Scholar 

  19. Morisaki H, Sugimoto M, Shiraishi H (2000) Bioelectrochemistry 51:21–25

    Article  CAS  Google Scholar 

  20. Zhao X, Hillard LR, Mechery SJ, Wang Y, Bagwe RP, Jin S, Tan W (2004) PNAS 101:15027–15032

    Article  CAS  Google Scholar 

  21. Wang H (2002) J AOAC Int 85:996–999

    CAS  Google Scholar 

  22. Han MJ, Lee SY (2006) Microbiol Mol Biol Rev 70:362–439

    Article  CAS  Google Scholar 

  23. VanBogelen RA, Schiller EE, Thomas JD, Neidhardt FC (1999) Electrophoresis 20:2149–2159

    Article  CAS  Google Scholar 

  24. Ingraham JL, Maaloe O, Neidhardt FC (1983) Growth of the bacterial cell. Sinauer, Sunderland, Massachusetts, pp 2–5

    Google Scholar 

  25. Hanegraaf PPF, Muller EB (2001) J Theor Biol 212:237–251

    Article  CAS  Google Scholar 

  26. Umbarger HE (1977) Biochem Educ 5:67–71 (and references therein)

    Article  CAS  Google Scholar 

  27. Smiechowski MF, Lvovich VF, Roy S, Fleischman A, Fissell WH, Riga AT (2006) Biosens Bioelectron 22:670–677

    Article  CAS  Google Scholar 

  28. Bernabeu P, de Cesare A, Caprani A (1989) J Electroanal Chem 265:261–275

    Article  CAS  Google Scholar 

  29. Bernabeu P, Caprani A (1990) Biomaterials 11:258–264

    Article  CAS  Google Scholar 

  30. Wright JEI, Cosman NP, Fatih K, Omanovic S, Roscoe SG (2004) J Electroanal Chem 564:185–197

    Article  CAS  Google Scholar 

  31. Leger C, Elliott SJ, Hoke KR, Jeuken LJC, Jones AK, Armstrong FA (2003) Biochemistry 42:8653–8662

    Article  CAS  Google Scholar 

  32. Moulton SE, Barisci JN, Bath A, Stella R, Wallace GG (2003) J Colloid Interface Sci 261:312–319

    Article  CAS  Google Scholar 

  33. Arkoub IA, Randriamahazaka H, Nigretto J-M (1997) Anal Chim Acta 340:99–108

    Article  CAS  Google Scholar 

  34. Bianco P (2002) Rev Mol Biotechnol 82:393–409

    Article  CAS  Google Scholar 

  35. Fernandez-Sanchez C, Gonzalez-Garcia MB, Costa-Garcia A (2000) Biosens Bioelectron 14:917–924

    Article  CAS  Google Scholar 

  36. Lucarelli F, Marrazza G, Turner APF, Mascini M (2004) Biosens Bioelectron 19:515–530

    Article  CAS  Google Scholar 

  37. Galan-Vidal C, Munoz J, Domingez C, Algeret S (1995) Trends Anal Chem 14:225–231

    Article  CAS  Google Scholar 

  38. Lewis BD (1992) Clin Chem 38:2093–2095

    CAS  Google Scholar 

  39. Wang J (1994) Analyst 119:763–766

    Article  CAS  Google Scholar 

  40. Wang J, Pedrero M, Cai X (1995) Analyst 120:1969–1972

    Article  CAS  Google Scholar 

  41. Skladal P, Morozova NO, Reshetilov AN (2002) Biosens Bioelectron 17:867–873

    Article  CAS  Google Scholar 

  42. Rohm I, Genrich M, Collier W, Bilitewski U (1996) Analyst 121:877–881

    Article  CAS  Google Scholar 

  43. Bonnet C, Andreescu S, Marty J-L (2003) Anal Chim Acta 481:209–211

    Article  CAS  Google Scholar 

  44. Wang J, Tian B, Nascimento VB, Angnes L (1998) Electrochim Acta 43:3459–3465

    Article  CAS  Google Scholar 

  45. Mathie AJ (1998) Chemical treatment for cooling water. Fairmont Press, Lilburn, GA, p 19

    Google Scholar 

  46. Winn WC (1988) Clin Microbiol Rev 1:60–81

    Google Scholar 

  47. Millar BC, Jiru X, Moore JE, Earle JAP (2000) J Microbiol Methods 42:139–147

    Article  CAS  Google Scholar 

  48. Witholt B, Heerikhizen HV, Leij LD (1976) Biochim Biophys Acta 443:534–544

    Article  CAS  Google Scholar 

  49. Compton SJ, Jones CG (1985) Anal Biochem 151:369–374

    Article  CAS  Google Scholar 

  50. Christophersen J (1968) In: Hawthorn J, Rolfe EJ (eds) Low temperature biology of foodstuffs. Pergamon Press, New York, pp 251–269

    Google Scholar 

  51. Morrin A, Killard AJ, Smyth MR (2003) Anal Lett 36:2021–2039

    Article  CAS  Google Scholar 

  52. Wiatr CL Analyst, Spring 2002: Detection and Eradication of a Non-Legionella Pathogen in a Cooling Water System http://www.awt.org/members/publications/analyst/2002/spring/water_system.htm

  53. Sarkar D, Chattoraj DK (1994) Colloids Surf 2:411–417

    Article  CAS  Google Scholar 

  54. Suttiprasit P, McGuire J (1992) J Colloid Interface Sci 154:327–336

    Article  CAS  Google Scholar 

  55. Ingraham JL, Maaloe O, Neidhardt FC (1983) Growth of the bacterial cell. Sinauer, Sunderland, Massachusetts, chap 1, pp 1–48

    Google Scholar 

  56. Hajra S, Chattoraj DK (1991) Indian J Biochem Biophys 28:267–279

    CAS  Google Scholar 

  57. Gani SA, Mukherjee DC, Chattoraj DK (1999) Langmuir 15:7130–7138

    Article  CAS  Google Scholar 

  58. McCoy J (1983) The chemical treatment of cooling water. Chemical Publishing, New York, NY, p 112

    Google Scholar 

  59. Engler CR (1990) Cell disruption by homogenizer. In: Asengo JD (ed) Separation processes in biotechnology. Marcel Dekker, New York

    Google Scholar 

  60. Fykse EM, Olsen JS, Skogan G (2003) J Microbiol Methods 55:1–10

    Article  CAS  Google Scholar 

  61. Lee S-W, Tai Y-C (1999) Sens Actuators 73:74–79

    Article  Google Scholar 

Download references

Acknowledgment

Funding from the Natural Sciences and Engineering Research Council of Canada and the University of Waterloo is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnes Obuchowska.

Electronic supplementary material

Below is the linked to the electronic supplementary material.

ESM 1

(PDF 220 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obuchowska, A. Quantitation of bacteria through adsorption of intracellular biomolecules on carbon paste and screen-printed carbon electrodes and voltammetry of redox-active probes. Anal Bioanal Chem 390, 1361–1371 (2008). https://doi.org/10.1007/s00216-007-1825-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1825-7

Keywords

Navigation