Advertisement

Analytical and Bioanalytical Chemistry

, Volume 390, Issue 5, pp 1431–1436 | Cite as

Molecularly imprinted polymer based on chemiluminescence imaging for the chiral recognition of dansyl-phenylalanine

  • Li Wang
  • Zhujun ZhangEmail author
  • Lianggao Huang
Original Paper

Abstract

A new molecularly imprinted polymer (MIP)–chemiluminescence (CL) imaging detection approach towards chiral recognition of dansyl-phenylalanine (Phe) is presented. The polymer microspheres were synthesized using precipitation polymerization with dansyl-l-Phe as template. Polymer microspheres were immobilized in microtiter plates (96 wells) using poly(vinyl alcohol) (PVA) as glue. The analyte was selectively adsorbed on the MIP microspheres. After washing, the bound fraction was quantified based on peroxyoxalate chemiluminescence (PO-CL) analysis. In the presence of dansyl-Phe, bis(2,4,6-trichlorophenyl)oxalate (TCPO) reacted with hydrogen peroxide (H2O2) to emit chemiluminescence. The signal was detected and quantified with a highly sensitive cooled charge-coupled device (CCD). Influencing factors were investigated and optimized in detail. Control experiments using capillary electrophoresis showed that there was no significant difference between the proposed method and the control method at a confidence level of 95%. The method can perform 96 independent measurements simultaneously in 30 min and the limits of detection (LODs) for dansyl-l-Phe and dansyl-d-Phe were 0.025 μmol L−1 and 0.075 μmol L−1 (3σ), respectively. The relative standard deviation (RSD) for 11 parallel measurements of dansyl-l-Phe (0.78 μmol L−1) was 8%. The results show that MIP-based CL imaging can become a useful analytical technology for quick chiral recognition.

Keywords

Molecularly imprinted polymer Precipitation polymerization Chemiluminescence imaging Dansyl-phenylalanine 

Notes

Acknowledgements

We gratefully acknowledge the Chinese Natural Science Foundation for financial support (Project no. 30470886).

References

  1. 1.
    Remcho VT, Tan ZJ (1999) Anal Chem 71:248A–255AGoogle Scholar
  2. 2.
    Sellergren BJ (2001) J Chromatogr A 906:227–252CrossRefGoogle Scholar
  3. 3.
    Ansell RJ (2005) Adv Drug Delivery Rev 57:1809–1835CrossRefGoogle Scholar
  4. 4.
    Maier NM, Lindner W (2007) Anal Biochem 389:377–397Google Scholar
  5. 5.
    Sellergren B (2001) Molecularly imprinted polymers—man-made mimics of antibodies and their applications in analytical chemistry. Elsevier, AmsterdamGoogle Scholar
  6. 6.
    Schweitz L, Andersson LI, Nilsson S (1999) Chromatographia 49:S93–S94CrossRefGoogle Scholar
  7. 7.
    Spegel P, Schweitz L, Nilsson S (2003) Electrophoresis 24:3892–3899CrossRefGoogle Scholar
  8. 8.
    Kriz D, Ramstrum O, Svensron A, Mosbach K (1995) Anal Chem 67:2142–2144CrossRefGoogle Scholar
  9. 9.
    Li X, Husson SM (2006) Biosens Bioelectron 22:336–348CrossRefGoogle Scholar
  10. 10.
    Li P, Huang Y, Hu J, Yuan C, Lin B (2002) Sensors 2:35–40Google Scholar
  11. 11.
    Piletsky SA, Terpetschnig E, Andersson HS, Nicholls IA, Wolfbeis OS (1999) Fresenius J Anal Chem 364:512–516CrossRefGoogle Scholar
  12. 12.
    Yu C, Mosbach K (1997) J Org Chem 62:4057–4064CrossRefGoogle Scholar
  13. 13.
    Meng Z, Zhou L, Wang J, Wang Q, Zhu D (1999) Biomed Chromatogr 13:389–393CrossRefGoogle Scholar
  14. 14.
    Lin JM, Uchiyama K, Hobo T (1998) Chromatographia 47:625–629CrossRefGoogle Scholar
  15. 15.
    Cao L, Li SFY, Zhou XC (2001) Analyst 126:184–188CrossRefGoogle Scholar
  16. 16.
    Reddy PS, Kobayashi T, Abe M, Fujii N (2002) Eur Polym J 38:521–529CrossRefGoogle Scholar
  17. 17.
    Feng L, Liu Y, Hu J (2004) Langmuir 20:1786–1790CrossRefGoogle Scholar
  18. 18.
    Liu F, Liu X, Ng S, Chan HS (2006) Sens Actuators B 113:234–240CrossRefGoogle Scholar
  19. 19.
    Chen Z, Takei Y, Deore BA, Nagaoka T (2000) Analyst 125:2249–2254CrossRefGoogle Scholar
  20. 20.
    Roda A, Guardigli M, Pasini P, Mirasoli M, Michelini E, Musiani M (2005) Anal Chim Acta 541:25–36CrossRefGoogle Scholar
  21. 21.
    Chouhan RS, Babu KV, Kumar MA, Neeta NS, Thakur MS, Amitha Rani BE, Pasha A, Karanth NGK, Karanth NG (2006) Biosens Bioelectron 21:1264–1271CrossRefGoogle Scholar
  22. 22.
    Zhang X, Ouyang J, Baeyens WRG, Delanghe JR, Dai Z, Shen S, Huang G (2003) Anal Chim Acta 497:83–92CrossRefGoogle Scholar
  23. 23.
    Luo L, Zhang Z, Hou L (2007) Anal Chim Acta 584:106–111CrossRefGoogle Scholar
  24. 24.
    Luo L, Zhang Z, Chen L, Ma L (2006) Food Chem 97:355–360CrossRefGoogle Scholar
  25. 25.
    Williams DC, Huff GF, Seitz WR (1976) Anal Chem 48:1003–1006CrossRefGoogle Scholar
  26. 26.
    Bowie AR, Sanders MG, Worsefold PJ (1996) J Biolumin Chemilumin 11:61–90CrossRefGoogle Scholar
  27. 27.
    McCapra F (2000) Methods Enzymol 305:3–47CrossRefGoogle Scholar
  28. 28.
    Mohan AG, Turro NJ (1974) J Chem Educ 51:528–529CrossRefGoogle Scholar
  29. 29.
    LeFevre, JW (1993) J Chromatogr A 653:293–302CrossRefGoogle Scholar
  30. 30.
    Surugiu I, Danielsson B, Ye L, Mosbach K, Haupt K (2001) Anal Chem 73:487–491CrossRefGoogle Scholar
  31. 31.
    Wang L, Zhang Z (2007) Anal Chim Acta 592:115–120CrossRefGoogle Scholar
  32. 32.
    Wulff G, Pol HG, Minarik MJ (1986) Liquid Chromatogr 9:385–405CrossRefGoogle Scholar
  33. 33.
    Haginaka J, Sanbe HJ (2001) J Chromatogr A 913:141–146CrossRefGoogle Scholar
  34. 34.
    Chen YY, Wang W, Yang WP, Zhang ZJ (2004) Chin Chem Lett 15:112–114Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.School of Chemistry and Materials ScienceShaanxi Normal UniversityXi’anChina

Personalised recommendations