Advertisement

Analytical and Bioanalytical Chemistry

, Volume 390, Issue 4, pp 1149–1157 | Cite as

Bioaccessibility of selected trace metals in urban PM2.5 and PM10 samples: a model study

  • Thomas Falta
  • Andreas Limbeck
  • Gunda Koellensperger
  • Stephan Hann
Original Paper

Abstract

Bioaccessibility of trace metals originating from urban particulate matter was assessed in a worst case scenario to evaluate the uptake and thus the hazardous potential of these metals via gastric juice. Sampling was performed over a period of about two months at the Getreidemarkt in downtown Vienna. Concentrations of the assayed trace metals (Ti, Cr, Mn, Co, Ni, Cu, Zn, Mo, Ag, Cd, Sn, Sb, Tl and Pb) were determined in PM2.5 and PM10 samples by ICP-MS. The metal concentrations in sampled air were in the low picogram to high nanogram per cubic metre range. The concentrations in PM2.5 samples were generally lower than those in PM10 samples. The average daily intake of these metals by inhalation for a healthy adult was estimated to be in the range of <1 ng (Tl) to >1,000 ng (Zn). To estimate the accessibility of the inhaled and subsequently ingested metals (i.e. after lung clearance had taken place) in the size range from 2.5- to 10-μm aerodynamic equivalent diameter, a batch-extraction with synthetic gastric juice was performed. The data were used to calculate the bioaccessibility of the investigated trace metals. Extractable fractions ranged from 2.10% (Ti in PM2.5) to 91.0% (Cd in PM2.5), thus yielding bioaccessible fractions (PM2.5–10) from 0.16 ng (Ag) to 178 ng (Cu).

Keywords

Bioaccessibility Inductively coupled plasma mass spectrometry Trace metals Urban particulate matter Synthetic gastric juice 

Abbreviations

ICP-MS

Inductively coupled plasma mass spectrometry

ICP-QMS

Inductively coupled plasma quadrupole mass spectrometry

DRC

Dynamic Reaction Cell™

PM

Particulate matter

PM10

PM with an aerodynamic diameter of ≤10 μm

PM2.5

PM with an aerodynamic diameter of ≤2.5 μm

PM2.5–10

PM with an aerodynamic diameter between 2.5 and 10 μm

GIT

Gastrointestinal tract

LOD

Limit of detection

LOQ

Limit of quantification

Notes

Acknowledgements

The authors would like to thank M. Handler (Vienna University of Technology) for his assistance with sample collection. Financial support by the “Hochschuljubiläumsfond der Stadt Wien” is highly acknowledged.

References

  1. 1.
    Pope CA III, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) J Am Med Assoc 287(9):1132–1141CrossRefGoogle Scholar
  2. 2.
    Utsunomiya S, Jensen KA, Keeler GJ, Ewing RC (2004) Environ Sci Technol 38(8):2289–2297CrossRefGoogle Scholar
  3. 3.
    Pakkanen TA, Kerminen V-M, Korhonen CH, Hillamo RE, Aarnio P, Koskentalo T, Maenhaut W (2001) Atmos Environ 35:5537–5551CrossRefGoogle Scholar
  4. 4.
    Pekney NJ, Davidson CI (2005) Anal Chim Acta 540:269–277CrossRefGoogle Scholar
  5. 5.
    Birmili W, Allen AG, Bary F, Harrison RM (2006) Environ Sci Technol 40(4):1144–1153CrossRefGoogle Scholar
  6. 6.
    Heyder J (1986) Single-particle deposition in human airways. In: Spurny KR (ed) Physical and chemical characterization of individual airborne particles. Ellis Horwood, ChichesterGoogle Scholar
  7. 7.
    Hinds WC (1993) Physical and chemical changes in the particulate phase. In: Willeke K, Baron PA (eds) Aerosol measurement - principles, techniques and applications. Van Nostrand Reinhold, New YorkGoogle Scholar
  8. 8.
    Wiener RW, Rodes CE (1993) Indoor aerosols and aerosol exposure. In: Willeke K, Baron PA (eds) Aerosol measurement - principles, techniques and applications. Van Nostrand Reinhold, New YorkGoogle Scholar
  9. 9.
    Patrick G, Stirling C (1992) Environ Health Perspect 95:47–51CrossRefGoogle Scholar
  10. 10.
    Ausschuss für Gefahrenstoffe - AGS-Geschäftsführung - Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA) (9/2001) Begründung zum Allgemeinen Staubgrenzwert in Technische Regeln für Gefahrenstoffe (TRGS) 900. http://www.baua.de
  11. 11.
    Hamel SC, Buckley B, Lioy PJ (1998) Environ Sci Technol 32(3):358–362CrossRefGoogle Scholar
  12. 12.
    Voutsa D, Samara C (2002) Atmos Environ 36:3583–3590CrossRefGoogle Scholar
  13. 13.
    Fernández Espínosa AJ, Ternero Rodríguez M, Barragán de la Rosa FJ, Jiménez Sánchez JC (2002) Atmos Environ 36:773–780CrossRefGoogle Scholar
  14. 14.
    Turner A, Henon DN, Dale JLL (2001) Estuar Coast Shelf Sci 53:671–681CrossRefGoogle Scholar
  15. 15.
    Ruby MV, Davis A, Link TE, Schoof R, Chaney RL, Freeman GB, Bergstrom P (1993) Environ Sci Technol 27:2870–2877CrossRefGoogle Scholar
  16. 16.
    Ruby MV, Davis A, Schoof R, Eberle S, Sellstone CM (1996) Environ Sci Technol 30:422–430CrossRefGoogle Scholar
  17. 17.
    Hamel SC, Ellickson KM, Lioy PJ (1999) Sci Total Environ 243/244:273–283CrossRefGoogle Scholar
  18. 18.
    Zischka M, Schramel P, Muntau H, Rehnert A, Gomez Gomez M, Stojanik B, Wannemaker G, Dams R, Quevauviller P, Maier EA (2002) TrAC, Trends Anal Chem 21(12):851–868CrossRefGoogle Scholar
  19. 19.
    Thews G (2000) Lungenatmung. In: Schmidt RF, Lang F, Thews G (eds) Physiologie des Menschen, 28. Auflage. Springer Medizin, HeidelbergGoogle Scholar
  20. 20.
    Moreno T, Querol X, Alastuey A, Viana M, Salvador P, Sánchez de la Campa A, Begoña A, de la Rosa J, Gibbons W (2006) Atmos Environ 40:6791–6803CrossRefGoogle Scholar
  21. 21.
    Götschi T, Hazenkamp-von Arx ME, Heinrich J, Bono R, Burney P, Forsberg B, Jarvis D, Maldonado J, Norbäck D, Stern WB, Sunyer J, Torén K, Verlato G, Villani S, Künzli N (2005) Atmos Environ 39:5947–5958CrossRefGoogle Scholar
  22. 22.
    Manalis N, Grivas G, Protonotarios V, Moutsatsou A, Samara C, Chaloulakou A (2005) Chemosphere 60:557–566CrossRefGoogle Scholar
  23. 23.
    Ragosta M, Caggiano R, D’Emilio M, Sabia S, Trippetta S, Macchiato M (2006) Atmos Res 81:304–319CrossRefGoogle Scholar
  24. 24.
    Thomaidis NS, Bakeas EB, Siskos PA (2003) Chemosphere 52:959–966Google Scholar
  25. 25.
    Pacyna JM, Pacyna EG (2001) Environ Rev 9:269–298CrossRefGoogle Scholar
  26. 26.
    Sternbeck J, Sjödin Ǻ, Andréasson K (2002) Atmos Environ 36:4735–4744CrossRefGoogle Scholar
  27. 27.
    Furuta N, Iijima A, Kambe A, Sakai K, Sato K (2005) J Environ Monit 7:1155–1161CrossRefGoogle Scholar
  28. 28.
    Gómez DR, Giné MF, Sánchez Bellato AC, Smichowski P (2005) J Environ Monit 7:1162–1168CrossRefGoogle Scholar
  29. 29.
    Reichl F-X (2002) Taschenatlas der Toxikologie - Substanzen, Wirkungen, Umwelt, 2. Auflage. Georg Thieme, StuttgartGoogle Scholar
  30. 30.
    Merian E, Anke M, Ihnat M, Stoeppler M (eds) (2004) Elements and their compounds in the environment, vol 2: metals and their compounds, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  31. 31.
    Fuhrmann GF (2006) Toxikologie für Naturwissenschaftler - Einführung in die theoretische und spezielle Toxikologie,1. Auflage. B. G. Teubner, WiesbadenGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Thomas Falta
    • 1
  • Andreas Limbeck
    • 2
  • Gunda Koellensperger
    • 1
  • Stephan Hann
    • 1
  1. 1.Division of Analytical ChemistryUniversity of Natural Resources and Applied Life Sciences - ViennaViennaAustria
  2. 2.Institute of Chemical Technologies and AnalyticsVienna University of TechnologyViennaAustria

Personalised recommendations