Analytical and Bioanalytical Chemistry

, Volume 391, Issue 4, pp 1309–1319 | Cite as

Analysis of cocaine and its principal metabolites in waste and surface water using solid-phase extraction and liquid chromatography–ion trap tandem mass spectrometry

  • Adriana Gheorghe
  • Alexander van Nuijs
  • Bert Pecceu
  • Lieven Bervoets
  • Philippe G. Jorens
  • Ronny Blust
  • Hugo Neels
  • Adrian CovaciEmail author
Original Paper


A validated method based on solid-phase extraction (SPE) and liquid chromatography–ion trap tandem mass spectrometry (LC-MS/MS) is described for the determination of cocaine (COC) and its principal metabolites, benzoylecgonine (BE) and ecgonine methyl ester (EME), in waste and surface water. Several SPE adsorbents were investigated and the highest recoveries (95.7 ± 5.5, 91.8 ± 2.2 and 72.5 ± 5.3% for COC, BE and EME, respectively) were obtained for OASIS HLB® cartridges (6 mL/500 mg) using 100 mL of waste water or 500 mL of surface water. Extracts were analysed by reversed-phase (RP) or hydrophilic interaction (HILIC) LC-MS/MS in positive ion mode with multiple reactions monitoring (MRM); the latter is the first reported application of the HILIC technique for drugs of abuse in water samples. Corresponding deuterated internal standards were used for quantification. The method limits of quantification (LOQs) for COC and BE were 4 and 2 ng L−1, respectively, when RPLC was used and 1, 0.5 and 20 ng L−1 for COC, BE and EME, respectively, with the HILIC setup. For COC and BE, the LOQs were below the concentrations measured in real water samples. Stability tests were conducted to establish the optimal conditions for sample storage (pH, temperature and time). The degradation of COC was minimal at −20 °C and pH = 2, but it was substantial at +20 °C and pH = 6. The validated method was applied to a set of waste and surface water samples collected in Belgium.


While human and veterinary pharmaceutical compounds have been monitored in the environment for more than 10 years, the detection of drugs of abuse in waste and surface water samples has only recently surfaced. The measurement of cocaine and metabolites in environmental water samples is an innovative approach for the estimation of cocaine consumption by the general population.


Cocaine Metabolites LC-MS/MS Waste water Analytical method Validation HILIC 



Dr. Adrian Covaci acknowledges the financial support granted by a postdoctoral fellowship by Flanders Scientific Funds for Research (FWO). Dr. Adriana Gheorghe acknowledges the fellowship offered by the Francqui fonds, while Alexander van Nuijs thanks the University of Antwerp for his scholarship. The sampling of WWTPs was done in cooperation with Aquafin Flanders. The present study was presented as a poster at the Euroanalysis XIV Symposium, 9–14 September 2007, Antwerp, Belgium, and was partially supported through a project financed by the Belgian Science Policy (Federal Drug Policy), contract DR/00/047.


  1. 1.
    Lakoski JM, Galloway MP, White FJ (1991) Cocaine: pharmacology, physiology and clinical strategies. CRC Press, Boco RatonGoogle Scholar
  2. 2.
    Zuccato E, Chiabrando C, Castiglioni S, Calamari D, Bagnati R, Schiarea S, Fanelli R (2005) Environ Health 4:14–20CrossRefGoogle Scholar
  3. 3.
    Warner A, Norman AB (2000) Therap Drug Monit 22:266–270CrossRefGoogle Scholar
  4. 4.
    McCurdy HH, Callahan LS, Williams RD (1989) J Forensic Sci 34:858–870Google Scholar
  5. 5.
    Dams R, Murphy CM, Lambert WE, Huestis MA (2003) Rapid Commun Mass Spectrom 17:1665–1670CrossRefGoogle Scholar
  6. 6.
    Weigel S, Kallenborn R, Huhnerfuss H (2004) J Chromatogr A 1023:183–195CrossRefGoogle Scholar
  7. 7.
    Castiglioni S, Zuccato E, Crisci E, Chiabrando C, Fanelli R, Bagnati R (2006) Anal Chem 78:8421–8429CrossRefGoogle Scholar
  8. 8.
    Hummel D, Loffler D, Fink G, Ternes TA (2006) Environ Sci Technol 40:7321–7328CrossRefGoogle Scholar
  9. 9.
    Huerta-Fontela M, Galceran MT, Ventura F (2007) Anal Chem 79:3821–3829CrossRefGoogle Scholar
  10. 10.
    Bones J, Thomas KV, Paull B (2007) J Environ Monit 9:701–707CrossRefGoogle Scholar
  11. 11.
    Moeller MR, Steinmeyer S, Kraemer T (1998) J Chromatogr B 713:91–109CrossRefGoogle Scholar
  12. 12.
    Van Bocxlaer JF, Clauwaert KM, Lambert WE, Deforce DL, Van den Eeckhout EG, De Leenheer AP (2000) Mass Spectrom Rev 19:165–170CrossRefGoogle Scholar
  13. 13.
    Gaillard Y, Pepin G (1997) Forensic Sci Intern 86:49–59CrossRefGoogle Scholar
  14. 14.
    Johansen SS, Bhatia HM (2007) J Chromatogr B 852:338–344CrossRefGoogle Scholar
  15. 15.
    Akre C, Fedeniuk R, MacNeil JD (2004) Analyst 129:145–149CrossRefGoogle Scholar
  16. 16.
    Biotage. Technical note 126; Sample preparation by non-polar SPE using Isolute® SPE sorbents; (
  17. 17.
    Wylie FM, Torrance H, Seymour A, Buttress S, Oliver JS (2005) Forensic Sci Intern 150:199–204CrossRefGoogle Scholar
  18. 18.
    Rook EJ, Hillebrand MJX, Rosing H, van Ree JM, Beijnen JH (2005) J Chromatogr B 824:213–221CrossRefGoogle Scholar
  19. 19.
    Tindall GW (2002) LC GC North America 20:1114–1118Google Scholar
  20. 20.
    Needham SR, Jeanville PM, Brown PR, Estape ES (2000) J Chromatogr B 748:77–87CrossRefGoogle Scholar
  21. 21.
    Jeanville PM, Estape ES, Needham SR, Cole MJ (2000) J Am Soc Mass Spectrom 11:257–263CrossRefGoogle Scholar
  22. 22.
    Grumbach ES, Wagrowski-Diehl DM, Mazzeo JR, Alden B, Iraneta PC (2004) LC GC North America 22:1010–1023Google Scholar
  23. 23.
    Hemstrom P, Irgum K (2006) J Sep Sci 29:1784–1821CrossRefGoogle Scholar
  24. 24.
    Giroud C, Michaud K, Sporkert F, Eap C, Augsburger M, Cardinal P, Mangin P (2004) J Anal Toxicol 28:464–474Google Scholar
  25. 25.
    Pizzolato TM, Lopez de Alda MJ, D Barcelo (2007) Trends Anal Chem 26:609–624CrossRefGoogle Scholar
  26. 26.
    Armbruster DA, Tillman MD, Hubbs LM (1994) Clin Chem 40:1233–1238Google Scholar
  27. 27.
    Hernando M, Heath E, Petrovic M, Barceló D (2006) Anal Bioanal Chem 385:985–991CrossRefGoogle Scholar
  28. 28.
    Dams R, Huestis MA, Lambert WE, Murphy CM (2003) J Am Soc Mass Spectrom 14:1290–1294CrossRefGoogle Scholar
  29. 29.
    Fatta D, Nikolaou A, Achilleos A, Meric S (2007) Trends Anal Chem 26:515–533CrossRefGoogle Scholar
  30. 30.
    Ambre J (1985) J Anal Toxicol 9:241–245Google Scholar
  31. 31.
    Reese TJ (1997) Pharmacokinetics of cocaine: considerations when assessing cocaine use by urinalysis. NIDA Res Monogr 175:221–234Google Scholar
  32. 32.
    Baselt RC (2004) Disposition of toxic drugs and chemicals in man, 7th edn. Biomedical, Foster City, CAGoogle Scholar
  33. 33.
    Cone EJ, Sampson-Cone AH, Darwin WD, Huestis MA, Oyler JM (2003) J Anal Toxicol 27:386–401Google Scholar
  34. 34.
    Skopp G, Klingmann A, Pötsch L, Mattern R (2001) Ther Drug Monit 23:174–181CrossRefGoogle Scholar
  35. 35.
    Maurer HH, Sauer C, Theobald DS (2006) Ther Drug Monit 28:447–453CrossRefGoogle Scholar
  36. 36.
    Zhang JY, Foltz RL (1990) J Anal Toxicol 14:201–205Google Scholar
  37. 37.
    Beausse J (2004) Trends Anal Chem 23:753–761CrossRefGoogle Scholar
  38. 38.
    Daughton CG, Ternes TA (1999) Environ Health Perspect 107 (suppl 6):907–938CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Adriana Gheorghe
    • 1
    • 2
  • Alexander van Nuijs
    • 1
  • Bert Pecceu
    • 3
  • Lieven Bervoets
    • 3
  • Philippe G. Jorens
    • 4
  • Ronny Blust
    • 3
  • Hugo Neels
    • 1
  • Adrian Covaci
    • 1
    • 3
    • 5
    Email author
  1. 1.Toxicological CentreUniversity of AntwerpAntwerpBelgium
  2. 2.Department of Analytical ChemistryUniversity of BucharestBucharestRomania
  3. 3.Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of BiologyUniversity of AntwerpAntwerpBelgium
  4. 4.Department of Clinical Pharmacology/Clinical Toxicology, University of AntwerpUniversity Hospital of AntwerpAntwerpBelgium
  5. 5.Toxicological CentreUniversity of AntwerpWilrijkBelgium

Personalised recommendations