Analytical and Bioanalytical Chemistry

, Volume 390, Issue 3, pp 825–832 | Cite as

Development of an osteoblast-based 3D continuous-perfusion microfluidic system for drug screening

  • Kihoon Jang
  • Kae Sato
  • Kazuyo Igawa
  • Ung-il Chung
  • Takehiko KitamoriEmail author
Original Paper


In this work, we demonstrated that biological cells could be cultured in a continuous-perfusion glass microchip system for drug screening. We used mouse Col1a1GFP MC-3T3 E1 osteoblastic cells, which have a marker gene system expressing green fluorescent protein (GFP) under the control of osteoblast-specific promoters. With our microchip-based cell culture system, we realized automated long-term monitoring of cells and sampling of the culture supernatant system for osteoblast differentiation assay using a small number of cells. The system successfully monitored cells for 10 days. Under the 3D microchannel condition, shear stress (0.07 dyne/cm2 at a flow rate of 0.2 μL/min) was applied to the cells and it enhanced the GFP expression and differentiation of the osteoblasts. Analysis of alkaline phosphatase (ALP), which is an enzyme marker of osteoblasts, supported the results of GFP expression. In the case of differentiation medium containing bone morphogenetic protein 2, we found that ALP activity in the culture supernatant was enhanced 10 times in the microchannel compared with the static condition in 48-well dishes. A combined system of a microchip and a cell-based sensor might allow us to monitor osteogenic differentiation easily, precisely, and noninvasively. Our system can be applied in high-throughput drug screening assay for discovering osteogenic compounds.


Bioassays Cell systems Microfluidics Osteoblast Shear stress Differentiation 


  1. 1.
    Sato K, Tokeshi M, Kitamori T, Sawada T (1999) Anal Sci 1:641–645CrossRefGoogle Scholar
  2. 2.
    Sorouraddin HM, Hibara A, Proskrunin MA, Kitamori T (2000) Anal Sci 16:1033–1037CrossRefGoogle Scholar
  3. 3.
    Tokeshi M, Minagawa T, Kitamori T (2000) J Chromatogr A 894:19–23CrossRefGoogle Scholar
  4. 4.
    Tokeshi M, Minagawa T, Kitamoroi T (2000) Anal Chem 72:1711–1714CrossRefGoogle Scholar
  5. 5.
    Hisamoto H, Horiuchi T, Tokeshi M, Hibara A, Kitamori T (2001) Anal Chem 73:1213–1218CrossRefGoogle Scholar
  6. 6.
    Hisamoto H, Saito T, Tokeshi M, Hibara A, Kitamori T (2001) Chem Commun 24:2662–2663CrossRefGoogle Scholar
  7. 7.
    Sato K, Tokeshi M, Odake T, Kimura H, Ooi T, Nakao M, Kitamori T (2000) Anal Chem 72:1144–1147CrossRefGoogle Scholar
  8. 8.
    Sato K, Tokeshi M, Kimura H, Kitamori T (2001) Anal Chem 73:1213–1218CrossRefGoogle Scholar
  9. 9.
    Sato K, Yamanaka M, Takahashi H, Tokeshi M, Kimura H, Kitamori T (2002) Electrophoresis 23:734–739CrossRefGoogle Scholar
  10. 10.
    Tanaka Y, Slyadnev MN, Hibara A, Tokeshi M, Kitamori T (2000) J Chromatogr A 894:45–51CrossRefGoogle Scholar
  11. 11.
    Slydnev MN, Tanaka Y, Tokeshi M, Kitamori T (2001) Anal Chem 73:4037–4044CrossRefGoogle Scholar
  12. 12.
    Tanaka Y, Sato K, Yamato M, Okano T, Kitamori T (2006) J Chromatogr A 1111:233–237CrossRefGoogle Scholar
  13. 13.
    Tanaka Y, Yamamoto M, Okano T, Kitamori T (2006) Meas Sci Technol 17:3167–3170CrossRefGoogle Scholar
  14. 14.
    Sato K, Egami A, Odake T, Tokeshi M, Aihara M, Kitamori T (2006) J Chromatorgr A 1111:228–232CrossRefGoogle Scholar
  15. 15.
    Tanaka Y, Kikukawa Y, Sato K, Sugii Y, Kitamori T (2007) Anal Sci 23:261–266CrossRefGoogle Scholar
  16. 16.
    Goto M, Sato K, Murakami A, Tokeshi M, Kitamori T (2005) Anal Chem 77:2125–2131CrossRefGoogle Scholar
  17. 17.
    Sikavitsas VI, Bancroft GN, Holtorf HL, Jansen JA, Mikos AG (2003) Proc Natl Acad Sci USA 100:14683–14688CrossRefGoogle Scholar
  18. 18.
    Yu X, Botchwey EA, Levine EM, Pollack SR, Laurencin CT (2004) Proc Natl Acad Sci USA 101:11203–11208CrossRefGoogle Scholar
  19. 19.
    Bancroft GN, Sikavitsas VI, van den Dolder J, Sheffield TL, Ambrose CG, Jansen JA, Mikos AG (2002) Proc Natl Acad Sci 99:12600–12605CrossRefGoogle Scholar
  20. 20.
    Leclerc E, David B, Griscom L, Lepioufle B, Fujii T, Layrolle P, Legallaisa C (2006) Biomaterials 27:586–595CrossRefGoogle Scholar
  21. 21.
    Urist MR (1965) Science 150:893–899CrossRefGoogle Scholar
  22. 22.
    Urist MR, Delange RJ, Finerman GAM (1983) Science 220:680–686CrossRefGoogle Scholar
  23. 23.
    Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA (1988) Science 242:1528–1534CrossRefGoogle Scholar
  24. 24.
    Wang EA, Rosen V, Cordes P, Hewick RM, Kriz MJ, Luxenberg DP, Sibley BS, Wozney JM (1988) Proc Natl Acad Sci USA 85:9484–9488CrossRefGoogle Scholar
  25. 25.
    Rickard DJ, Sullivan TA, Shenker BJ, Leboy PS, Kazhdan I (1994) Dev Biol 161:218–228CrossRefGoogle Scholar
  26. 26.
    Murata H, Tanaka H, Taguchi T, Shiigi E, Mizokami H (2004) J Cell Biochem 92:715–722CrossRefGoogle Scholar
  27. 27.
    Osyczka AM, Diefenderfer DL, Bhargave G, Leboy PS (2004) Cells Tissues Organs 176:109–119CrossRefGoogle Scholar
  28. 28.
    Ohba S, Ikeda T, Kugimiya F, Yano F, Lichtler AC, Nakamura K, Takato T, Kawaguchi H, Chung UI (2007) FASEB J 21:1777CrossRefGoogle Scholar
  29. 29.
    Hibara A, Tokeshi M, Uchiyama K, Hisamoto H, Kitamori T (2001) Anal Sci 17:89–93CrossRefGoogle Scholar
  30. 30.
    Uchiyama K, Hibara A, Kimura H, Sawada T, Kitamori T (2000) Jpn J Appl Phys 39:5316–5322CrossRefGoogle Scholar
  31. 31.
    Tokeshi M, Uchida M, Hibara A, Sawada T, Kitamori T (2001) Anal Chem 73:2112–2116CrossRefGoogle Scholar
  32. 32.
    Kakuta M, Takahashi H, Kazuno S, Murayama K, Ueno T, Tokeshi M (2006) Meas Sci Technol 17:3189–3194CrossRefGoogle Scholar
  33. 33.
    Kitamori T, Tokeshi M, Hibara A, Sato K (2004) Anal Chem A 76:52–60Google Scholar
  34. 34.
    Hiki S, Mawatari K, Hibara A, Tokeshi M, Kitamori T (2003) Anal Sci 19:15–22CrossRefGoogle Scholar
  35. 35.
    Proskurnin MA, Slyadnev MN, Tokeshi M, Kitamori T (2003) Anal Chim Acta 480:79–95CrossRefGoogle Scholar
  36. 36.
    Suck K, Behr L, Fischer M, Hoffmeister H, van Griensven M, Stahl F, Scheper T, Kasper C (2007) J Biomed Mater Res A 80:268–275Google Scholar
  37. 37.
    Gomez-Sjoberg R, Leyrat AA, Pirone DM, Chen CS, Quake SR (2007) Anal Chem (in press)Google Scholar
  38. 38.
    Jeon NL, Baskaran H, Dertinger SK, Whitesides GM, Van de Water L, TonerM (2002) Nat Biotechnol 20:826–830Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Kihoon Jang
    • 1
  • Kae Sato
    • 1
    • 3
  • Kazuyo Igawa
    • 4
  • Ung-il Chung
    • 3
    • 4
    • 5
  • Takehiko Kitamori
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Applied Chemistry, Graduate School of EngineeringThe University of TokyoTokyoJapan
  2. 2.Core Research for Evolutional Science and TechnologyJapan Science and Technology AgencySaitamaJapan
  3. 3.Center for NanoBio IntegrationThe University of TokyoTokyoJapan
  4. 4.Division of Tissue EngineeringThe University of Tokyo HospitalTokyoJapan
  5. 5.Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan

Personalised recommendations