Analytical and Bioanalytical Chemistry

, Volume 390, Issue 4, pp 1087–1091 | Cite as

The study of surface properties of an IgE-sensitive aptasensor using an acoustic method

  • M. Šnejdárková
  • L. Svobodová
  • V. Polohová
  • T. Hianik
Original Paper


We applied the acoustic transverse shear mode (TSM) method for study of the surface properties of a DNA aptasensor that specifically binds human immunoglobulin E (IgE). The biotinylated 45-mer DNA aptamers were immobilized on the surface of a self-assembled layer composed of a mixture of polyamidoamine dendrimers of the fourth generation with 1-hexadecanetiol covered by neutravidin. Using the TSM method, we studied the kinetics of changes of the series resonant frequency, f s, and the motional resistance, R m, of a quartz crystal transducer, used as a support for formation of the sensing layer. We have shown that attachment of the biotinylated DNA aptamers onto the surface covered by neutravidin results in a decrease of f s, but in an increase of R m. Similar changes of f s and R m were observed following addition of IgE. This suggests the contribution of friction forces to the crystal oscillation, which was taken into account in the calculation of the mass changes at the sensor surface following binding processes.


DNA aptamer Immunoglobulin E Dendrimers Transverse shear mode method Biosensor 



This work was supported by European Commission 6 FP program NoE NeuroPrion (contract no. FOOD-CT-2004-506579), by the Agency for Promotion Research and Development under contract no. APVV-20-P01705 and by the Slovak Grant Agency (projects no. 2/7134/7 to M.S. and 1/4016/07 to T.H.). We are grateful to M. Thompson for the generous gift of the flow cell.


  1. 1.
    Jayasena SD (1999) Clin Chem 45:1628–1650Google Scholar
  2. 2.
    Mayer G, Andreas J (2004) Biodrugs 18:351–359CrossRefGoogle Scholar
  3. 3.
    Mairal T, Cengiz Özalp V, Sánchez PL, Mir M, Katakis I, O’Sullivan CK (2007) Anal Bioanal Chem (in press)Google Scholar
  4. 4.
    Tombelli S, Minunni M, Luzi E, Mascini M (2005) Bioelectrochemistry 67:135–141CrossRefGoogle Scholar
  5. 5.
    Liss M, Petersen B, Wolf H, Prohaska E (2002) Anal Chem 74:4488–4495CrossRefGoogle Scholar
  6. 6.
    Hianik T, Ostatná V, Sonlajtnerova M, Grman I (2007) Bioelectrochemistry 70:127–133CrossRefGoogle Scholar
  7. 7.
    Sauerbrey G (1959) Z Phys 155:1546–1551Google Scholar
  8. 8.
    Ellis JS, Thompson M (2004) Phys Chem Chem Phys 6:4928–4938CrossRefGoogle Scholar
  9. 9.
    Tassew M, Thompson M (2003) Biophys Chem 106:241–252CrossRefGoogle Scholar
  10. 10.
    Svobodová L, Šnejdárková M, Polohová V, Grman I, Rybár P, Hianik T (2006) Electroanalysis 18:1943–1949CrossRefGoogle Scholar
  11. 11.
    Martin SJ, Grandstaff VE, Frye GC (1991) Anal Chem 62:2272–2281CrossRefGoogle Scholar
  12. 12.
    Holloway AF, Nabok A, Thompson M, Ray AK, Crowther D, Siddiqi J (2003) Sensors 3:187–191CrossRefGoogle Scholar
  13. 13.
    Balantine DS, White RM, Martin SJ, Ricco AJ, Zellers ET, Frye GC, Wohlthen H (1997) In: Stern R, Levy M (eds) Acoustic wave sensors. Academic, San Diego, pp 331−395Google Scholar
  14. 14.
    Wang X, Ellis JS, Lyle E-L, Sundaram P, Thompson M (2006) Mol Biosyst 2:184–192CrossRefGoogle Scholar
  15. 15.
    Zhang J, Su XD, O’Shea SJ (2002) Biophys Chem 99:31–41CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • M. Šnejdárková
    • 1
  • L. Svobodová
    • 1
  • V. Polohová
    • 1
  • T. Hianik
    • 2
  1. 1.Institute of Animal Biochemistry and GeneticsSlovak Academy of SciencesIvanka pri DunajiSlovak Republic
  2. 2.Department of Nuclear Physics and BiophysicsComenius UniversityBratislavaSlovak Republic

Personalised recommendations