Advertisement

Analytical and Bioanalytical Chemistry

, Volume 390, Issue 3, pp 971–977 | Cite as

An amperometric hydrogen peroxide biosensor based on immobilization of horseradish peroxidase on an electrode modified with magnetic dextran microspheres

  • Hai-Li Zhang
  • Guo-Song Lai
  • De-Yan Han
  • Ai-Min Yu
Original Paper

Abstract

A new kind of magnetic dextran microsphere (MDMS) with uniform shape and narrow diameter distribution has been prepared from magnetic iron nanoparticles and dextran. Horseradish peroxidase (HRP) was successfully immobilized on the surface of an MDMS-modified glassy-carbon electrode (GCE), and the immobilized HRP displayed excellent electrocatalytic activity in the reduction of H2O2 in the presence of the mediator hydroquinone (HQ). The effects of experimental variables such as the concentration of HQ, solution pH, and the working potential were investigated for optimum analytical performance. This biosensor had a fast response to H2O2 of less than 10 s and an excellent linear relationship was obtained in the concentration range 0.20 μmol L−1–0.68 mmol L−1, with a detection limit of 0.078 μmol L−1 (S/N = 3) under the optimum conditions. The response showed Michaelis–Menten behavior at larger H2O2 concentrations, and the apparent Michaelis–Menten constant \( K^{{app}}_{M} \) was estimated to be 1.38 mmol L−1. Moreover, the selectivity, stability, and reproducibility of the biosensor were evaluated, with satisfactory results.

Figure

Amperometric response of the biosensor to successive additions of H2O2 and the plot of amperometric response vs. H2O2 concentration

Keywords

Horseradish peroxidase Hydrogen peroxide Magnetic microspheres Biosensor 

References

  1. 1.
    Wang L, Wang E (2004) Electrochem Commun 6:225–229CrossRefGoogle Scholar
  2. 2.
    Lei CX, Hu SQ, Shen GL, Yu RQ (2003) Talanta 59:981–988CrossRefGoogle Scholar
  3. 3.
    Chen S, Yuan R, Chai Y, Zhang L, Wang N, Li X (2007) Biosens Bioelectron 22:1268–1274CrossRefGoogle Scholar
  4. 4.
    Wang G, Lu H, Hu N (2007) J Electroanal Chem 599:91–99CrossRefGoogle Scholar
  5. 5.
    Li J, Xiao LT, Liu XM, Zeng GM, Huang GH, Shen GL, Yu RQ (2003) Anal Bioanal Chem 376:902–907CrossRefGoogle Scholar
  6. 6.
    Di J, Shen C, Peng S, Tu Y, Li S (2005) Anal Chim Acta 553:196–200CrossRefGoogle Scholar
  7. 7.
    Ren C, Song Y, Li Z, Zhu G (2005) Anal Bioanal Chem 381:1179–1185CrossRefGoogle Scholar
  8. 8.
    Xiao Y, Ju HX, Chen HY (2000) Anal Biochem 278:22–28CrossRefGoogle Scholar
  9. 9.
    Qian L, Yang X (2006) Talanta 68:721–727CrossRefGoogle Scholar
  10. 10.
    He P, Hu N (2004) Electroanalysis 16:1122–1131CrossRefGoogle Scholar
  11. 11.
    Salomão S, Kátia C, Fernandes F (2004) Process Biochem 39:883–888CrossRefGoogle Scholar
  12. 12.
    Mahiuddin S, Renoncourt A, Bauduin P, Touraud D, Kunz W (2005) Langmuir 21:5259–5262CrossRefGoogle Scholar
  13. 13.
    Wang G, Xu JJ, Chen HY, Lu ZH (2003) Biosens Bioelectron 18:335–343CrossRefGoogle Scholar
  14. 14.
    Beata PB, Jan M, Andrzej L (2006) Electrochim Acta 51:2173–2181CrossRefGoogle Scholar
  15. 15.
    Tong Z, Yuan R, Chai Y, Xie Y, Chen S (2007) J Biotechol 128:567–575CrossRefGoogle Scholar
  16. 16.
    Katz E, Willner I (2005) Angew Chem Int Ed 44:4791–4794CrossRefGoogle Scholar
  17. 17.
    Kim DJ, Lyu YK, Choi HN, Min IH, Lee WY (2005) Chem Commun 2966–2968Google Scholar
  18. 18.
    Fang B, Wang G, Zhang W, Li M, Kan X (2005) Electroanalysis 17:744–748CrossRefGoogle Scholar
  19. 19.
    Cao D, Hu N (2006) Biophys Chem 121:209–217CrossRefGoogle Scholar
  20. 20.
    Cao D, He P, Hu N (2003) Analyst 128: 1268–1274CrossRefGoogle Scholar
  21. 21.
    Huang SH, Liao MH, Chen DH (2003) Biotechnol Prog 19: 1095–1100CrossRefGoogle Scholar
  22. 22.
    Zhao G, Feng JJ, Zhang QL, Li SP, Chen HY (2005) Chem Mater 17: 3154–3159CrossRefGoogle Scholar
  23. 23.
    Katz E, Baron R, Willner I (2005) J Am Chem Soc 127:4060–4070CrossRefGoogle Scholar
  24. 24.
    Yu D, Blankert B, Bodoki E, Bollo S, Viré JC, Sandulescu R, Nomura A, Kauffmann JM (2006) Sens Actuators B, Chem 113:749–754CrossRefGoogle Scholar
  25. 25.
    Pu HT, Jiang FJ, Yang ZL (2006) Mater Chem Phys 100:10–14CrossRefGoogle Scholar
  26. 26.
    Shamim N, Hong L, Hidajat K, Uddin MS (2007) Sep Purif Technol 53:164–170CrossRefGoogle Scholar
  27. 27.
    Yang M, Li HL (2001) Talanta 55:479–484CrossRefGoogle Scholar
  28. 28.
    Tong XD, Xue B, Sun Y (2001) Biotechnol Prog 17:134–139CrossRefGoogle Scholar
  29. 29.
    Lei H, Wang W, Chen LL, Li XC, Yi B, Deng L (2004) Enzyme Microb Tech 35:15–21CrossRefGoogle Scholar
  30. 30.
    Xia Z, Wang G, Tao K, Li J (2005) J Magn Magn Mater 293:182–186CrossRefGoogle Scholar
  31. 31.
    Vlugt-Wensink KDF, Jiang X, Schotman G, Kruijtzer G, Vredenberg A, Chung JT, Zhang Z, Versluis C, Ramos D, Verrijk R, Jiskoot W, Crommelin DJA, Hennink WE (2006) Biomacromolecules 7:2983–2990CrossRefGoogle Scholar
  32. 32.
    Franssen O, Stenekes RJH, Hennink WE (1999) J Control Release 59:219–228CrossRefGoogle Scholar
  33. 33.
    Lei CX, Hu SQ, Gao N, Shen GL, Yu RQ (2004) Bioelectrochemistry 65:33–39CrossRefGoogle Scholar
  34. 34.
    Vianello F, Zennaro L, Rigo A (2007) Biosens Bioelectron 22:2694–2699CrossRefGoogle Scholar
  35. 35.
    Denkbas EB, Kilicay E, Birlikseven C, Öztürk E (2002) React Funct Polym 50:225–232CrossRefGoogle Scholar
  36. 36.
    Feng JJ, Gao Z, Xu JJ, Chen HY (2005) Anal Biochem 342:280–286CrossRefGoogle Scholar
  37. 37.
    Chen S, Yuan R, Chai Y, Xu L, Wang N, Li X, Zhang L (2006) Electroanalysis 18:471–477CrossRefGoogle Scholar
  38. 38.
    Xiao Y, Ju HX, Chen HY (1999) Anal Chim Acta 391: 73–82CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Hai-Li Zhang
    • 1
  • Guo-Song Lai
    • 1
  • De-Yan Han
    • 1
  • Ai-Min Yu
    • 2
  1. 1.Hubei Key Laboratory of Bioanalytical Technique, Department of Chemistry and Environmental EngineeringHubei Normal UniversityHuangshiChina
  2. 2.School of Chemical and Mathematical SciencesMurdoch UniversityMurdochAustralia

Personalised recommendations