Analytical and Bioanalytical Chemistry

, Volume 390, Issue 5, pp 1253–1260 | Cite as

Force microscopy analysis using chemometric tools

  • Christian Budich
  • Jonathan West
  • Peter Lampen
  • Volker Deckert
Paper in Forefront


In this paper we report the first application of multivariate data analysis techniques to force spectrometry measurement sets to enable the physicochemical assignment of spatially ordered multi-component systems. Principal component analysis (PCA) and hierarchical clustering techniques were used to reveal hidden chemical information within force-distance curves generated by high spatial resolution force microscopy. Two experimental samples were analyzed: (i) a two-component system of cytochrome c proteins on a mica surface, and (ii) a three-component system of avidin protein islands positioned on a gold and glass surface. PCA and hierarchical clustering techniques were used to discriminate the different components of the two-component system, whereas hierarchical clustering was found to be superior for the three-component system. Results were in good agreement with the topography and prior knowledge of the surface patterns. This research represents a formative step towards the combination of force spectrometry with chemometric tools for the high resolution physicochemical investigation of complex biochemical systems.


Interface Surface analysis Chemometrics Statistics AFM (atomic force microscopy) Force spectroscopy Force-distance curves 


  1. 1.
    Geladi P (2003) Spectroc Acta Part B Atom Spectr 58:767–782CrossRefGoogle Scholar
  2. 2.
    Geladi P, Sethson B, Nystrom J, Lillhonga T, Lestander T, Burger J (2004) Spectroc Acta Part B Atom Spectr 59:1347–1357Google Scholar
  3. 3.
    Kemsley EK, Swinhoe RR, Smith AC, McCann MC, Wang TL (2004) J Sci Food Agric 84:966–976CrossRefGoogle Scholar
  4. 4.
    Ozaki Y, Murayama K (2001) Infrared and Raman spectroscopy and chemometrics of biological materials. In: Gremlich H, Yan B (eds) Infrared and Raman spectroscopy of biological materials. Marcel Dekker, New YorkGoogle Scholar
  5. 5.
    Kondepati VR, Oszinda T, Heise HM, Luig K, Mueller R, Schroeder O, Keese M, Backhaus J (2007) Anal Bioanal Chem 387:1633–1641CrossRefGoogle Scholar
  6. 6.
    de Groot PJ, Postma GJ, Melssen WJ, Buydens LMC, Deckert V, Zenobi R (2001) Anal Chim Acta 446:71–83CrossRefGoogle Scholar
  7. 7.
    Neugebauer U, Schmid U, Baumann K, Ziebuhr W, Kozitskaya S, Deckert V, Schmitt M, Popp J (2007) Chemphyschem 8:124–137CrossRefGoogle Scholar
  8. 8.
    Clausen-Schaumann H, Seitz M, Krautbauer R, Gaub HE (2000) Curr Opin Chem Biol 4:524–530CrossRefGoogle Scholar
  9. 9.
    Benoit M, Gaub HE (2002) Cells Tissues Organs 172:174–189CrossRefGoogle Scholar
  10. 10.
    Afrin R, Yamada T, Ikai A (2004) Ultramicroscopy 100:187–195CrossRefGoogle Scholar
  11. 11.
    Florin EL, Moy VT, Gaub HE (1994) Science 264:415–417CrossRefGoogle Scholar
  12. 12.
    Friddle RW, Sulchek TA, Albrecht H, De Nard SJ, Noy A (2007) Biophys J 523AGoogle Scholar
  13. 13.
    Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Science 276:1109–1112CrossRefGoogle Scholar
  14. 14.
    Kessler M, Gaub HE (2006) Structure 14:521–527CrossRefGoogle Scholar
  15. 15.
    Benoit M (2002) Methods Cell Biol 68:91–114CrossRefGoogle Scholar
  16. 16.
    Goncalves RP, Agnus G, Sens P, Houssin C, Bartenlian B, Scheuring S (2006) Nat Methods 3:1007–1012CrossRefGoogle Scholar
  17. 17.
    Ebner A, Madl J, Kienberger F, Chtcheglova LA, Puntheeranurak T, Zhu R, Tang JL, Gruber HJ, Schutz GJ, Hinterdorfer P (2007) Curr Nanosci 3:49–56CrossRefGoogle Scholar
  18. 18.
    Morris VJ, Kirby AR, Gunning AP (1999) Atomic force microscopy for biologists. Imperial College Press, LondonGoogle Scholar
  19. 19.
    Camesano TA, Liu YT, Datta M (2007) Adv Water Resour 30:1470–1491CrossRefGoogle Scholar
  20. 20.
    Castro LB, Kappl M, Petri DF (2006) Langmuir 22:3757–3762CrossRefGoogle Scholar
  21. 21.
    Whitesides GM, Ostuni E, Takayama S, Jiang XY, Ingber DE (2001) Annu Rev Biomed Eng 3:335–373CrossRefGoogle Scholar
  22. 22.
    Xia YN, Whitesides GM (1998) Angew Chem Int Edit 37:551–575Google Scholar
  23. 23.
    Bernard A, Delamarche E, Schmid H, Michel B, Bosshard HR, Biebuyck H (1998) Langmuir 14:2225–2229CrossRefGoogle Scholar
  24. 24.
    Bernard A, Renault JP, Michel B, Bosshard HR, Delamarche E (2000) Adv Mater 12:1067–1070CrossRefGoogle Scholar
  25. 25.
    Pearson K (1901) Lond Edinb Dublin Philos Mag J Sci 6:559–572Google Scholar
  26. 26.
    Beebe KR, Pell RJ, Seasholtz M (1998) Chemometrics a practical guide. Wiley. WeinheimGoogle Scholar
  27. 27.
    Otto M (1999) Chemometrics. Wiley. WeinheimGoogle Scholar
  28. 28.
    Kaufmann L, Rousseeuw PJ (1990) Finding groups in data - an introduction to cluster analysis. Wiley, New YorkGoogle Scholar
  29. 29.
    Neugebauer U, Rosch P, Schmitt M, Popp J, Julien C, Rasmussen A, Budich C, Deckert V (2006) Chemphyschem 7:1428–1430CrossRefGoogle Scholar
  30. 30.
    Rasmussen A, Deckert V (2006) J Raman Spectrosc 37:311–317CrossRefGoogle Scholar
  31. 31.
    Budich C, Neugebauer U, Popp J, Deckert V (2007) J Microsc (in press)Google Scholar
  32. 32.
    Knoll B, Keilmann F (1999) Nature 399:134–137CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Christian Budich
    • 1
  • Jonathan West
    • 1
  • Peter Lampen
    • 1
  • Volker Deckert
    • 1
  1. 1.ISAS - Institute for Analytical SciencesDortmundGermany

Personalised recommendations