Analytical and Bioanalytical Chemistry

, Volume 390, Issue 1, pp 317–322 | Cite as

Detection of molecular processes in the intact retina by ATR-FTIR spectromicroscopy

  • Sebastiano Massaro
  • Theodora Zlateva
  • Vincent Torre
  • Luca Quaroni
Short Communication


We used Fourier transform infrared spectromicroscopy in the attenuated total reflection configuration to study biochemical events associated with the response to light of an intact retina. We show that the technique is suitable for the detection in real time of molecular processes occurring in rod outer segments induced by light absorption. Two-dimensional correlation analysis was applied to the identification and interpretation of specific spectral changes associated to the evolution of the system. The technique allows us to observe an extensive protein translocation, which we interpret as arising from the release of transducin from the disk membrane and its redistribution from the outer segment towards the inner segment of rod cells. These results are in full agreement with our current understanding of retinal physiology and validate the technique as a useful tool for the study of complex molecular processes in intact tissue.


Spectral changes in the mid infrared region following exposure of an intact retina to light


Phototransduction ATR-FTIR Retina Transducin Rod cell 


  1. 1.
    Kazarian SG, Chan KLA (2006) Biochim Biophys Acta 1758:858–867CrossRefGoogle Scholar
  2. 2.
    Schnapf JL, Baylor DL (1987) Sci Am 256:40–47CrossRefGoogle Scholar
  3. 3.
    Baylor D (1996) Proc Nat Acad Sci 93:560–565CrossRefGoogle Scholar
  4. 4.
    Forti S, Menini A, Rispoli G, Torre V (1989) J Physiol 419:265–295Google Scholar
  5. 5.
    Menon ST, Han M, Sakmar TP (2001) Physiol Rev 81:1659–1688Google Scholar
  6. 6.
    Kramer RH, Molokanova E (2001) J Exp Biol 204:2921–2931Google Scholar
  7. 7.
    Hamer RD, Nicholas SC, Tranchina D, Lamb TD, Jarvinen JL (2005) Vis Neurosci 22:417–436CrossRefGoogle Scholar
  8. 8.
    Flaherty KM, Zozulya S, Stryer L, McKay DB (1993) Cell 75:709–716CrossRefGoogle Scholar
  9. 9.
    Stryer L (1996) Proc Nat Acad Sci 93:557–559CrossRefGoogle Scholar
  10. 10.
    Wall MA, Coleman DE, Lee E, Iniguez-Lluhi JA, Posner BA, Gilman AG, Sprang SR (1995) Cell 83:1047–1058CrossRefGoogle Scholar
  11. 11.
    Palczewski K (ed) (2003) Vertebrate phototransduction and the visual cycle. Academic Press, New YorkGoogle Scholar
  12. 12.
    Maeda T, Imanishi Y, Palczewski K (2003) Prog Retin Eye Res 22:417–434CrossRefGoogle Scholar
  13. 13.
    Lamb TD, Pugh EN Jr (2004) Prog Retin Eye Res 23:307–380CrossRefGoogle Scholar
  14. 14.
    Noda I (1989) J Am Chem Soc 111:8116–8118CrossRefGoogle Scholar
  15. 15.
    Noda I (1990) Appl Spectrosc 44:550–561CrossRefGoogle Scholar
  16. 16.
    Noda I (1993) Appl Spectrosc 47:1329–1336CrossRefGoogle Scholar
  17. 17.
    Noda I (2007) Anal Sci 23:139–146CrossRefGoogle Scholar
  18. 18.
    Marcott C, Dowrey AE, Noda I (1994) Anal Chem 66:1065ACrossRefGoogle Scholar
  19. 19.
    Fahmy K, Sakmar TP, Siebert F (2000) Methods Enzymol 315:178–196CrossRefGoogle Scholar
  20. 20.
    Fahmy K, Jager F, Beck M, Zvyaga TA, Sakmar TP, Siebert F (1993) Proc Natl Acad Sci USA 90:10206–10210CrossRefGoogle Scholar
  21. 21.
    Jager F, Fahmy K, Sakmar TP, Siebert F (1994) Biochemistry 33:10878–10882CrossRefGoogle Scholar
  22. 22.
    Rath P, Decaluwe Ll, Bovee-Geurts PH, Degrip WJ, Rothschild KJ (1993) Biochemistry 32:10277–10282CrossRefGoogle Scholar
  23. 23.
    Rothschild KJ (1992) J Bioenerg Biomembr 24:147–167CrossRefGoogle Scholar
  24. 24.
    Siebert F (1995) Israel J Chem 35:309–323Google Scholar
  25. 25.
    Lolley RN (1982) In Packer L (ed) Methods Enzymol, Biomembranes, Part H:37–39Google Scholar
  26. 26.
    Baumann C (1982) In Packer L (ed) Methods Enzymol, Biomembranes, Part H:29–34Google Scholar
  27. 27.
    Newman EA, Bartosch R (1999) J Neurosci Meth 93:169–175CrossRefGoogle Scholar
  28. 28.
    Fahmy K (1998) Biophys J 75:1306–1318CrossRefGoogle Scholar
  29. 29.
    Sokolov M, Lyubarsky AL, Strissel KJ, Savchenko AB, Govardovskii VI, Pugh EN Jr, Arshavsky VY (2002) Neuron 33:95–106CrossRefGoogle Scholar
  30. 30.
    Peterson JJ, Tam BM, Moritz OL, Shelamer CL, Dugger DR, McDowell JH, Hargrave PA, Papermaster DS, Smith WC (2003) Exp Eye Res 76:553–563CrossRefGoogle Scholar
  31. 31.
    Brann MR, Cohen LV (1987) Science 235:585–587CrossRefGoogle Scholar
  32. 32.
    Zhu X, Li A, Brown B, Weiss ER, Osawa S, Craft CM (2002) Mol Vis 8:462–471Google Scholar
  33. 33.
    Nair KS, Hanson SM, Mendez A, Gurevich EV, Kennedy MJ, Shestopalov VI, Vishnivetskiy SA, Chen J, Hurley JB, Gurevich VV, Slepak VZ (2005) Neuron 46:555–567CrossRefGoogle Scholar
  34. 34.
    Elias RV, Sezate SS, Cao W, McGinnis JF (2004) Mol Vis 10:672–681Google Scholar
  35. 35.
    Fain GL (2006) Bioessays 28:344–354CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Sebastiano Massaro
    • 2
  • Theodora Zlateva
    • 2
    • 4
  • Vincent Torre
    • 2
  • Luca Quaroni
    • 1
    • 3
  1. 1.Sincrotrone TriesteTriesteItaly
  2. 2.International School for Advanced Studies (SISSA)TriesteItaly
  3. 3.Canadian Light SourceSaskatoonCanada
  4. 4.Department of Pathology and Laboratory MedicineUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations