Advertisement

Analytical and Bioanalytical Chemistry

, Volume 391, Issue 5, pp 1609–1618 | Cite as

Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules

  • W. Russ Algar
  • Ulrich J. Krull
Review

Abstract

Quantum dots (QDs) have a number of unique optical properties that are advantageous in the development of bioanalyses based on fluorescence resonance energy transfer (FRET). Researchers have used QDs as energy donors in FRET schemes for the analysis of nucleic acids, proteins, proteases, haptens, and other small molecules. This paper reviews these applications of QDs. Existing FRET technologies can potentially be improved by using QDs as energy donors instead of conventional fluorophores. Superior brightness, resistance to photobleaching, greater optimization of FRET efficiency, and/or simplified multiplexing are possible with QD donors. The applicability of the Förster formalism to QDs and the feasibility of using QDs as energy acceptors are also reviewed.

Figure

A ligand capped core/shell quantum dot acting as energy donor in a FRET process with aconjugated Cy3 labeled oligonucleotide

Keywords

Quantum dots Fluorescence resonance energy transfer Nucleic acids Maltose binding protein Nanobiotechnology 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of their research by the Natural Sciences and Engineering Research Council of Canada (NSERC). W.R.A. is also grateful to NSERC for provision of a graduate fellowship.

References

  1. 1.
    Bruchez M, Morronne M, Gin P, Weiss S, Alivisatos AP (1998) Science 281:2013–2016CrossRefGoogle Scholar
  2. 2.
    Chan WCW, Nie S (1998) Science 281:2016–2018CrossRefGoogle Scholar
  3. 3.
    Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S (2005) Curr Opin Biotechnol 16:63–72CrossRefGoogle Scholar
  4. 4.
    Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Nat Mater 4:435–446CrossRefGoogle Scholar
  5. 5.
    Parak WJ, Pellegrino T, Plank C (2005) Nanotechnology 16:R9–R25CrossRefGoogle Scholar
  6. 6.
    Pinaud F, Michalet X, Bentolila LA, Tsay JM, Doose S, Li JJ, Iyer G, Weiss S (2006) Biomaterials 27:1679–1687CrossRefGoogle Scholar
  7. 7.
    Smith AM, Gao X, Nie S (2004) Photochem Photobiol 80:377–385Google Scholar
  8. 8.
    Epstein JR, Biran I, Walt DR (2002) Anal Chim Acta 469:3–36CrossRefGoogle Scholar
  9. 9.
    Yang CYJ, Medley CD, Tan WH (2005) Curr Pharm Biotechnol 6:445–452CrossRefGoogle Scholar
  10. 10.
    Tan WH, Wang KM, Drake TJ (2004) Curr Opin Chem Biol 8:547–553CrossRefGoogle Scholar
  11. 11.
    Ranasinghe RT, Brown T (2005) Chem Commun 5487–5502Google Scholar
  12. 12.
    Marras SAE, Tyagi S, Kramer FR (2006) Clin Chim Acta 363:48–60CrossRefGoogle Scholar
  13. 13.
    Solinas A, Brown LJ, McKeen C, Mellor JM, Nicol J, Thelwell N, Brown T (2001) Nucleic Acids Res 29:e96CrossRefGoogle Scholar
  14. 14.
    Ohiro Y, Arai R, Ueda H, Nagamune T (2002) Anal Chem 74:5786–5792CrossRefGoogle Scholar
  15. 15.
    Pulli T, Höyhtyä M, Söderlund H, Takkinen K (2005) Anal Chem 77:2637–2642CrossRefGoogle Scholar
  16. 16.
    Heyduk T (2002) Curr Opin Biotechnol 12:292–296CrossRefGoogle Scholar
  17. 17.
    Zal T, Gascoigne RJ (2004) Curr Opin Immun 16:418–427CrossRefGoogle Scholar
  18. 18.
    Cheung HC (1991) In: Lakowicz JR (ed) Topics in fluorescence spectroscopy. Plenum, New YorkGoogle Scholar
  19. 19.
    Elangovan M, Day RN, Periasamy A (2005) J Microsc 2002:3–14Google Scholar
  20. 20.
    Jares-Erijman EA, Jovin TM (2003) Nat Biotechnol 21:1387–1395CrossRefGoogle Scholar
  21. 21.
    Clapp AR, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H (2004) J Am Chem Soc 126:301–310CrossRefGoogle Scholar
  22. 22.
    Scholes GD, Andrews DL (2005) Phys Rev B 72:125331CrossRefGoogle Scholar
  23. 23.
    Clapp AR, Medintz IL, Fisher BR, Anderson GP, Mattoussi H (2005) J Am Chem Soc 127:1242–1250CrossRefGoogle Scholar
  24. 24.
    Hildebrandt N, Charbonnière LJ, Beck M, Ziessel RF, Löhmannsröben H-G (2005) Angew Chem Int Ed 44:7612–7615CrossRefGoogle Scholar
  25. 25.
    Wang S, Mamedova N, Kotov NA, Chen W, Studer J (2002) Nano Lett 2:817–822CrossRefGoogle Scholar
  26. 26.
    Zhang C-Y, Yeh HC, Kuroki MT, Wang TH (2005) Nat Mater 4:826–831CrossRefGoogle Scholar
  27. 27.
    Algar WR, Krull UJ (2007) Anal Chim Acta 581:193–201CrossRefGoogle Scholar
  28. 28.
    Kim JH, Morikis D, Ozkan M (2004) Sens Actuators B 102:315–319CrossRefGoogle Scholar
  29. 29.
    Kim JH, Chaudhary S, Ozkan M (2007) Nanotechnology 18:195105CrossRefGoogle Scholar
  30. 30.
    Algar WR, Krull UJ (2006) Langmuir 22:11346–11352CrossRefGoogle Scholar
  31. 31.
    Mattoussi H, Kuno MK, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) J Am Chem Soc 122:12142–12150CrossRefGoogle Scholar
  32. 32.
    Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM (2003) Nat Mater 2:630–638CrossRefGoogle Scholar
  33. 33.
    Peng H, Zhang L, Kjällman THM, Soeller C, Travas-Sejdic J (2007) J Am Chem Soc 129:3048–3049CrossRefGoogle Scholar
  34. 34.
    Massey M, Algar WR, Krull UJ (2006) Anal Chim Acta 568:181–189CrossRefGoogle Scholar
  35. 35.
    Hermann T, Patel DJ (2000) Science 287:820–825CrossRefGoogle Scholar
  36. 36.
    Famulok M, Mayer G, Blind M (2000) Acc Chem Res 33:591–599CrossRefGoogle Scholar
  37. 37.
    Levy M, Carter SF, Ellington AD (2005) ChemBioChem 6:2163–2166CrossRefGoogle Scholar
  38. 38.
    Nutiu R, Li Y (2003) J Am Chem Soc 125:4771–4778CrossRefGoogle Scholar
  39. 39.
    Chang E, Miller JS, Sun J, Yu WW, Colvin VL, Drezek R, West JL (2005) Biochem Biophys Res Commun 334:1317–1321CrossRefGoogle Scholar
  40. 40.
    Medintz IL, Clapp AR, Brunel FM, Tiefenbrunn T, Uyeda HT, Chang EL, Deschamps JR, Dawson PE, Mattoussi H (2006) Nat Mater 5:581–589CrossRefGoogle Scholar
  41. 41.
    Pathak S, Davidson MC, Silva GA (2007) Nano Lett 7:1389–1845CrossRefGoogle Scholar
  42. 42.
    Goldman ER, Medintz IL, Whitley JL, Hayhurst A, Clapp AR, Uyeda HY, Deschamps JR, Lassman ME, Mattoussi H (2005) J Am Chem Soc 127:6744–6751CrossRefGoogle Scholar
  43. 43.
    Nikiforov TT, Beechem JM (2006) Anal Biochem 357:68–76CrossRefGoogle Scholar
  44. 44.
    Wei Q, Lee M, Yu X, Lee EK, Seong GH, Choo J, Cho YW (2006) Anal Biochem 358:31–37CrossRefGoogle Scholar
  45. 45.
    Medintz IL, Konnert JH, Clapp AR, Stanish I, Twigg ME, Mattoussi H, Mauro JM, Deschamps JR (2004) Proc Natl Acad Sci USA 101:9612–9617CrossRefGoogle Scholar
  46. 46.
    Medintz IL, Clapp AR, Melinger JS, Deschamps JR, Mattoussi H (2005) Adv Mat 17:2450–2455CrossRefGoogle Scholar
  47. 47.
    Medintz IL, Sapsford KE, Clapp AR, Pons T, Higashiya S, Welch JT, Mattoussi H (2006) J Phys Chem B 110:10683–10690CrossRefGoogle Scholar
  48. 48.
    Sapsford KE, Medintz IL, Golden JP, Deschamps JR, Uyeda HT, Mattoussi H (2004) Langmuir 20:7720–7728CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Chemical Sensors Group, Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaCanada

Personalised recommendations