Analytical and Bioanalytical Chemistry

, Volume 390, Issue 2, pp 759–768 | Cite as

Multiresidue determination of chlorophenoxy acid herbicides in human urine samples by use of solid-phase extraction and capillary LC–UV detection

  • N. Rosales-Conrado
  • M. E. León-González
  • L. V. Pérez-Arribas
  • L. M. Polo-Díez
Original Paper


Chlorophenoxy acid herbicides are intensively applied to get rid of unwanted plants because of their low cost and selectivity. Due to their toxicity, which depends on their chemical form, the European Community has established legal directives to restrict their use and to control their maximum residue levels in several matrices. Determination of chlorophenoxy acids—2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA), 2-(2,4-dichlorophenoxy)propanoic acid (2,4-DP), 2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP), 4-(4-chloro-2-methylphenoxy)butanoic acid (MCPB) and 2-(2,4,5-trichlorophenoxy)propanoic acid (2,4,5-TP) in spiked human urine samples has been carried out by capillary LC, after solid-phase extraction on a column packed with silica C18 restricted-access material. Chromatographic analysis was performed in gradient-elution mode at 25 °C, with injection of 20 μL low-organic-solvent composition herbicide solutions for focusing purposes on the head of the capillary column, and diode array detection at 232 nm. Urine samples collected during 24 h from healthy and unexposed volunteers were spiked in the concentration range 25–150 μg L−1; recoveries obtained were between 66 and 100% (n = 6 for each spiked level) and RSDs (relative standard deviations) were between 1 and 5%. Detection limits in the urine samples from volunteers were between 3.5 and 6.0 μg L−1. The developed methodology has allowed the clean-up and preconcentration of low volumes of untreated human urine without previous treatment, showing the effectiveness of the employed SPE sorbent for extracting the target analytes and ultimately resulting in the reduction of the sample-preparation time.


Chlorophenoxy acid herbicides Capillary liquid chromatography Preconcentration and sample clean-up Restricted-access material Urine 



Authors wish to thank the Spanish Ministerio de Ciencia y Tecnología (Dirección General de Investigación) for financial support (project BQU-2003-00667). N.R. wishes to thank the Complutense University for support through a predoctoral fellowship.


  1. 1.
  2. 2.
    Balagué CE, De Ruiz CS, Rey R, De Duffard AME, Nader-Macías ME (2002) Toxicology 177:143–155CrossRefGoogle Scholar
  3. 3.
    Arbuckle TE, Schrader SM, Cole DC, Hall JC, Bancej CM, Turner LA, Claman P (1999) Reprod Toxicol 13:421–429CrossRefGoogle Scholar
  4. 4.
    Arbuckle TE, Cole DC, Ritter L, Ripley BD (2004) Epidemiology 15:187–194CrossRefGoogle Scholar
  5. 5.
    Curwin BD, Hein MJ, Sanderson WT, Barr DB, Heederik D, Reynolds SJ, Ward EM, Alavanja MC (2005) J Expo Anal Environ Epidemiol 15:500–508CrossRefGoogle Scholar
  6. 6.
    Arbuckle TE, Bruce D, Ritter L, Hall JC (2006) J Expo Sci Environ Epidemiol 16:98–104CrossRefGoogle Scholar
  7. 7.
    Alexander BH, Mandel JS, Baker BA, Burns CJ, Bartels MJ, Acquavella JF, Gustin C (2007) Environ Health Perspect 115:370–376CrossRefGoogle Scholar
  8. 8.
    Aprea C, Colosio C, Mammone T, Minoia C, Maroni M (2002) J Chromatogr B 769:191–219CrossRefGoogle Scholar
  9. 9.
    Hines CJ, Deddens JA, Striley CAF, Biagini E, Shoemaker DA, Brown KK, Mackenzie BA, Delon Hull R (2003) Ann Occup Hyg 47:503–517CrossRefGoogle Scholar
  10. 10.
    Gardner M, McCombs S, Beach J, Michael L, Thomas K, Helburn RS (2005) J Anal Toxicol 29:188–192Google Scholar
  11. 11.
    Hernández F, Sancho JV, Pozo OJ (2005) Anal Bioanal Chem 382:934–946CrossRefGoogle Scholar
  12. 12.
    Baker SE, Barr DB, Driskell WJ, Beeson MD, Needham LL (2000) J Expo Anal Environ Epidemiol 10:789–798Google Scholar
  13. 13.
    Norrgran J, Bravo R, Bishop AM, Restrepo P, Whitehead RD, Needham LL, Barr DB (2006) J Chromatogr B 830:185–195CrossRefGoogle Scholar
  14. 14.
    Bovanová L, Brandsteterová E (2000) J Chromatogr A 880:149–168CrossRefGoogle Scholar
  15. 15.
    Poole CF (2003) Trends Anal Chem 22:362–373CrossRefGoogle Scholar
  16. 16.
    Rossi DT, Zhang N (2000) J Chromatogr A 885:97–113CrossRefGoogle Scholar
  17. 17.
    Hogendoorn E, van Zoonen P (2000) J Chromatogr A 892:435–453CrossRefGoogle Scholar
  18. 18.
    Hogendoorn EA, Huls R, Dijkman E, Hoogerbrugge R (2001) J Chromatogr A 938:23–33CrossRefGoogle Scholar
  19. 19.
    Prüß A, Kempter C, Gysler J, Jira T (2004) J Chromatogr A 1303:167–176Google Scholar
  20. 20.
    Vissers JPC, Claessens HA, Cramers CA (1997) J Chromatogr A 779:1–28CrossRefGoogle Scholar
  21. 21.
    Gou Y, Pawliszyn J (2000) Anal Chem 72:2774–2779CrossRefGoogle Scholar
  22. 22.
    Rosales-Conrado N, León-González ME, Pérez-Arribas LV, Polo-Díez LM (2002) Anal Chim Acta 470:147–154CrossRefGoogle Scholar
  23. 23.
    Molander P, Tomasen A, Krisloffersen L, Greibokk T, Lundanes E (2002) J Chromatogr B 766:77–87CrossRefGoogle Scholar
  24. 24.
    Lucas-Delfa MA, Pérez-Arribas LV, Navarro-Villoslada F, León-González ME, Polo-Díez LM (2000) J Liq Chromatogr Related Technol 23:755–767CrossRefGoogle Scholar
  25. 25.
    Rosales-Conrado N, León-González ME, Pérez-Arribas LV, Polo-Díez LM (2005) J Chromatogr A 1081:114–121CrossRefGoogle Scholar
  26. 26.
    Tomlin CDS (1977) Pesticide manual. British Crop Protection Council, LondonGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • N. Rosales-Conrado
    • 1
  • M. E. León-González
    • 1
  • L. V. Pérez-Arribas
    • 1
  • L. M. Polo-Díez
    • 1
  1. 1.Dpto. Química Analítica, Facultad de Ciencias QuímicasUniversidad Complutense de MadridMadridSpain

Personalised recommendations