Analytical and Bioanalytical Chemistry

, Volume 390, Issue 2, pp 477–486 | Cite as

Lead isotopic analysis of infant bone tissue dating from the Roman era via multicollector ICP–mass spectrometry

  • David De Muynck
  • Christophe Cloquet
  • Elisabeth Smits
  • Frederik A. de Wolff
  • Ghylaine Quitté
  • Luc Moens
  • Frank Vanhaecke
Original Paper


Archaeological samples originating from a cemetery of a Roman settlement, Pretorium Agrippinae (1st–3rd century A.D.), excavated near Valkenburg (The Netherlands) have been subjected to Pb isotopic analysis. The set of samples analysed consisted of infant bone tissue and possible sources of bone lead, such as the surrounding soil, garum, and lead objects (e.g., water pipes). After sample digestion with quantitative Pb recovery and subsequent quantitative and pure isolation of lead, the Pb isotopic composition was determined via multicollector ICP–mass spectrometry. The Pb isotope ratio results allowed distinction of three groups: bone, soil, and lead objects + garum. The 208Pb/206Pb ratio ranges were between 2.059 and 2.081 for the soils, between 2.067 and 2.085 for the bones, and between 2.087 and 2.088 for the lead objects. The garum sample is characterised by a 208Pb/206Pb ratio of 2.085. The bone group is situated on the mixing line between the soil and lead object groups, allowing the statement that diagenesis is not the main cause of the Pb found in the bones.


Multicollector ICP–MS Pb isotopic analysis Bone tissue Soil Roman era 



D.D.M. thanks the Special Research Fund (Bijzonder Onderzoeksfonds) from Ghent University for financial support (grant B/05608/01). F.V. acknowledges the Fund for Scientific Research–Flanders (FWO-Vlaanderen) for financial support in the form of research projects 3G058506 and 3G066906.


  1. 1.
    Walczyk T (2004) Anal Bioanal Chem 378:229–231CrossRefGoogle Scholar
  2. 2.
    Houk RS, Fassel VA, Flesch GD, Svec HJ, Gray AL, Taylor CE (1980) Anal Chem 52:2283–2289CrossRefGoogle Scholar
  3. 3.
    Gray AL (1986) J Anal At Spectrom 1:403–405CrossRefGoogle Scholar
  4. 4.
    Walder AJ, Freedman PA (1992) J Anal At Spectrom 7:571–575CrossRefGoogle Scholar
  5. 5.
    Walder AJ, Furata N (1993) Anal Sci 9:675–680CrossRefGoogle Scholar
  6. 6.
    Halliday AN, Lee DC, Christensen JN, Walder AJ, Freedman PA, Jones CE, Hall CM, Yi W, Teagle D (1995) Int J Mass Spectrom Ion Proc 146/147:21–33CrossRefGoogle Scholar
  7. 7.
    Halliday AN, Lee DC, Christensen JN, Rehkämper M, Yi W, Luo X, Hall CM, Ballentine CJ, Pettke T, Stirling C (1998) Geochim Cosmochim Acta 62:919–940CrossRefGoogle Scholar
  8. 8.
    Vanhaecke F, Moens L (2004) Anal Bioanal Chem 378:232–240CrossRefGoogle Scholar
  9. 9.
    Ingle CP, Sharp BL, Horstwood MSA, Parrish RR, Lewis DJ (2003) J Anal At Spectrom 18:219–229CrossRefGoogle Scholar
  10. 10.
    Archer C, Vance D (2004) J Anal At Spectrom 19:656–665CrossRefGoogle Scholar
  11. 11.
    Wombacher F, Rehkämper M (2003) J Anal At Spectrom 18:1371–1375CrossRefGoogle Scholar
  12. 12.
    Albarède F, Telouk P, Blichert-Toft J, Boyet M, Agranier A, Nelson B (2004) Geochim Cosmochim Acta 68:2725–2744CrossRefGoogle Scholar
  13. 13.
    Rehkämper M, Mezger K (2000) J Anal At Spectrom 15:1451–1460CrossRefGoogle Scholar
  14. 14.
    Albarède F, Beard B (2004) Analytical methods for non-traditional isotopes. In: Johnson CM, Beard BL, Albarède F (eds) Reviews in mineralogy and geochemistry, vol. 55, Geochemistry of non-traditional stable isotopes. Mineralogical Society of America, WashingtonGoogle Scholar
  15. 15.
    Philip AT, Gerson B (1994) Clin Lab Med 14:423–444Google Scholar
  16. 16.
    Gidlow DA (2004) Occup Med-Oxford 54:76–81CrossRefGoogle Scholar
  17. 17.
    Piomelli S (2002) Pediatr Clin N Am 49:1285–1304CrossRefGoogle Scholar
  18. 18.
    Hu H (1991) Am J Public Health 81:1070–1072CrossRefGoogle Scholar
  19. 19.
    Philip AT, Gerson B (1994) Clin Lab Med 14:651–670Google Scholar
  20. 20.
    International Agency for Research on Cancer (1987) Monographs on the evaluation of the carcinogenic risk of chemicals to humans suppl 6:230–232Google Scholar
  21. 21.
    Papanikolaou NC, Hatzidaki EG, Belivanis S, Tzanakakis GN, Tsatsakis AM (2005) Med Sci Monit 11:329–336Google Scholar
  22. 22.
    Rabinowitz MB (1991) Environ Health Perspect 91:33–37CrossRefGoogle Scholar
  23. 23.
    Rabinowitz MB, Wetherill GW, Kopple JD (1976) J Clin Invest 58:260–270CrossRefGoogle Scholar
  24. 24.
    Rosman KJR, Taylor PDP (1998) Pure Appl Chem 70:217–235CrossRefGoogle Scholar
  25. 25.
    Bouvier A, Blichert-Toft J, Moynier F, Vervoort JD, Albarède F (2007) Geochim Cosmochim Acta 71:1583–1604CrossRefGoogle Scholar
  26. 26.
    Cloquet C, Carignan J, Libourel G (2006) Atmos Environ 40:574–587CrossRefGoogle Scholar
  27. 27.
    Dolgopolova A, Weiss DJ, Seltmann R, Kober B, Mason TFD, Coles B, Stanley CJ (2006) Appl Geochem 21:563–579CrossRefGoogle Scholar
  28. 28.
    Reinhard KJ, Ghazi AM (1992) Am J Phys Anthropol 89:183–195CrossRefGoogle Scholar
  29. 29.
    Bower NW, Getty SR, Smith CP, Simpson ZR, Hoffman JM (2005) Int J Osteoarchaeol 15:360–370CrossRefGoogle Scholar
  30. 30.
    Bower NW, McCants SA, Custodio JM, Ketterer ME, Getty SR, Hoffman JM (2007) Sci Total Environ 372:463–473CrossRefGoogle Scholar
  31. 31.
    Columella LJM (1976) De Re Rustica. In: Ahrens K (ed) Über Landwirtschaft: ein Lehr- und Handbuch der gesamten Acker- und Viehwirtschaft aus dem 1. Jahrhundert u.Z. Akad.-Verl., BerlinGoogle Scholar
  32. 32.
    Gilfillan SC (1965) J Occup Med 7:53–60Google Scholar
  33. 33.
    Nriagu JO (1983) N Engl J Med 308:660–663CrossRefGoogle Scholar
  34. 34.
    Bult EJ, Hallewas DP (1986) Graven bij Valkenburg I: het archeologisch onderzoek in 1985. DelftGoogle Scholar
  35. 35.
    Bult EJ, Hallewas DP (1987) Graven bij Valkenburg II: het archeologisch onderzoek in 1986. DelftGoogle Scholar
  36. 36.
    Bult EJ, Hallewas DP (1990) Graven bij Valkenburg III: het archeologisch onderzoek in 1987 en 1988. DelftGoogle Scholar
  37. 37.
    Plinius NH (1947) Naturalis Historia. In Rackham H (ed) Naturalis Historia. CambridgeGoogle Scholar
  38. 38.
    Smits E (2006) Leven en sterven langs de Limes, PhD dissertation, University of AmsterdamGoogle Scholar
  39. 39.
    De Muynck D, Cloquet C, Vanhaecke F (2007) J Anal At Spectrom DOI  10.1039/b709461b
  40. 40.
    Belshaw NS, Freedman PA, O’Nions RK, Frank M, Guo Y (1998) Int J Mass Spectrom 181:51–58CrossRefGoogle Scholar
  41. 41.
    White WM, Albarède F, Télouk P (2000) Chem Geol 167:257–270CrossRefGoogle Scholar
  42. 42.
    Galer SJG, Abouchami W (1998) Miner Mag 62A:491–492CrossRefGoogle Scholar
  43. 43.
    Hoppin JA, Aro A, Hu H, Ryan PB (1997) Pediatrics 100:365–370CrossRefGoogle Scholar
  44. 44.
    Farias P, Hu H, Rubenstein E, Meneses-Gonzalez F, Fishbein E, Palazuelos E, Aro A, Hernandez-Avila M (1998) Environ Health Perspect 106:733–737CrossRefGoogle Scholar
  45. 45.
    Kabata-Pendias A, Pendias H (1984) Trace elements in soils and plants. CRC Press, FloridaGoogle Scholar
  46. 46.
    Taylor SR, McLennan SM (1995) Rev Geophys 33:241–265CrossRefGoogle Scholar
  47. 47.
    Martínez-García MJ, Moreno JM, Moreno-Clavel J, Vergara N, García-Sánchez A, Guillamón A, Portí M, Moreno-Grau S (2005) Sci Total Environ 348:51–72CrossRefGoogle Scholar
  48. 48.
    Millard A (2006) Sci Total Environ 354:295–297CrossRefGoogle Scholar
  49. 49.
    Zapata J, Pérez-Sirvent C, Martínez-Sánchez MJ, Tovar P (2006) Sci Total Environ 369:357–368CrossRefGoogle Scholar
  50. 50.
    Elbaz-Poulichet F, Holliger P, Huang WW, Martin JM (1984) Nature 308:409–411CrossRefGoogle Scholar
  51. 51.
    Weiss D, Shotyk W, Kramers JD, Gloor M (1999) Atmos Environ 33:3751–3763CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • David De Muynck
    • 1
  • Christophe Cloquet
    • 1
  • Elisabeth Smits
    • 2
  • Frederik A. de Wolff
    • 3
  • Ghylaine Quitté
    • 4
  • Luc Moens
    • 1
  • Frank Vanhaecke
    • 1
  1. 1.Department of Analytical ChemistryGhent UniversityGhentBelgium
  2. 2.Amsterdam Archaeological CenterUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Toxicology LaboratoryLeiden University Medical CenterLeidenThe Netherlands
  4. 4.Institute for Isotope Geomistry and Mineral ResourcesZürichSwitzerland

Personalised recommendations