Analytical and Bioanalytical Chemistry

, Volume 390, Issue 1, pp 113–124 | Cite as

SERS: a versatile tool in chemical and biochemical diagnostics

  • Katharina Hering
  • Dana Cialla
  • Katrin Ackermann
  • Thomas Dörfer
  • Robert Möller
  • Henrik Schneidewind
  • Roland Mattheis
  • Wolfgang Fritzsche
  • Petra Rösch
  • Jürgen Popp
Review

Abstract

Raman spectroscopy is a valuable tool in various research fields. The technique yields structural information from all kind of samples often without the need for extensive sample preparation. Since the Raman signals are inherently weak and therefore do not allow one to investigate substances in low concentrations, one possible approach is surface-enhanced (resonance) Raman spectroscopy. Here, rough coin metal surfaces enhance the Raman signal by a factor of 104–1015, depending on the applied method. In this review we discuss recent developments in SERS spectroscopy and their impact on different research fields.

Keywords

Surface-enhanced Raman spectroscopy SERS substrates Single-molecule detection Tip-enhanced Raman spectroscopy 

References

  1. 1.
    Fleischmann M, Hendra PJ, Mcquilla Aj (1974) Chem Phys Lett 26:163–166Google Scholar
  2. 2.
    Moskovits M (1985) Rev Modern Phys 57:783–826Google Scholar
  3. 3.
    Tian Z-Q, Yang Z-L, Ren B, Wu D-Y (2006) Top Appl Phys 103:125–146Google Scholar
  4. 4.
    Otto A (1982) Springer Ser Chem Phys 21:186–195Google Scholar
  5. 5.
    Stöckle RM, Suh YD, Deckert V, Zenobi R (2000) Chem Phys Lett 318:131–136Google Scholar
  6. 6.
    Jeanmaire DL, Van Duyne RP (1977) J Electroanal Chem 84:1–20Google Scholar
  7. 7.
    Wang Z, Rothberg LJ (2006) Appl Phys B 84:289–293Google Scholar
  8. 8.
    Yan W, Bao L, Mahurin SM, Dai S (2004) Appl Spectrosc 58:18–25Google Scholar
  9. 9.
    Wang CH, Sun DC, Xia XH (2006) Nanotechnol 17:651–657Google Scholar
  10. 10.
    Kucheyev SO, Hayes JR, Biener J, Huser T, Talley CE, Hamza AV (2006) Appl Phys Lett 89:053102–053104Google Scholar
  11. 11.
    Bahns JT, Yan F, Qiu D, Wang R, Chen L (2006) Appl Spectrosc 60:989–993Google Scholar
  12. 12.
    Lee PC, Meisel DJ (1982) J Phys Chem 86:3391–3395Google Scholar
  13. 13.
    Steinbrück A, Csaki A, Festag G, Fritzsche W (2006) Plasmonics 1:79–85Google Scholar
  14. 14.
    Jackson JB, Halas NJ (2004) PNAS 101:17930–17935Google Scholar
  15. 15.
    Pergolese B, Bigotto A, Muniz-Miranda M, Sbrana G (2005) Appl Spectrosc 59:194–199Google Scholar
  16. 16.
    Sun Y, Xia Y (2002) Science 298:2176–2179Google Scholar
  17. 17.
    Wiley B, Sun Y, Mayers B, Xia Y (2005) Chem Eur J 11:454–463Google Scholar
  18. 18.
    Jin R, Cao YC, Hao E, Metraux GS, Schatz GC, Mirkin CA (2003) Nature 425:487–490Google Scholar
  19. 19.
    Leverette CL, Jacobs SA, Shanmukh S, Chaney SB, Dluhy RA, Zhao YP (2006) Appl Spectrosc 60:906–913Google Scholar
  20. 20.
    Zhang J, Gao A, Alvarez-Puebla RA, Buriak JM, Fenniri H (2006) Adv Mater 18:3233–3237Google Scholar
  21. 21.
    Fischer UC, Zingsheim HP (1981) J Vac Sci Technol 19:881–885Google Scholar
  22. 22.
    Haynes CL, Van Duyne RP (2001) J Phys Chem B 105:5599–5611Google Scholar
  23. 23.
    Hulteen JC, Van Duyne RP (1995) J Vac Sci Technol A 13:1553–1558Google Scholar
  24. 24.
    Haynes CL, Duyne RPv (2002) Mater Res Soc Proc 728:S10.17.11–S10.17.16Google Scholar
  25. 25.
    Baia L, Baia M, Popp J, Astilean S (2006) J Phys Chem B 110:23982–23986Google Scholar
  26. 26.
    Baia M, Toderas F, Baia L, Popp J, Astilean S (2006) Chem Phys Lett 422:127–132Google Scholar
  27. 27.
    Stuart DA, Yuen JM, Shah N, Lyandres O, Yonzon CR, Glucksberg MR, Walsh JT, VanDuyne RP (2006) Anal Chem 78:7211–7215Google Scholar
  28. 28.
    Li H, Baum CE, Sun J, Cullum BM (2006) Appl Spectrosc 60:1377–1385Google Scholar
  29. 29.
    Kahl M, Voges E, Hill W (1998) Spectrosc Eur 10:8–13Google Scholar
  30. 30.
    Félidj N, Aubard J, Lévi G, Krenn JR, Salerno M, Schider G, Lamprecht B, Leitner A, Aussenegg FR (2002) Phys Rev B 65:0754191–0754199Google Scholar
  31. 31.
    Felidj N, Aubard J, Levi G, Krenn JR, Hohenau A, Schider G, Leitner A, Aussenegg FR (2003) Appl Phys Lett 82:3095–3097Google Scholar
  32. 32.
    Sackmann M, Bom S, Balster T, Materny A (2007) J Raman Spectrosc 38:277–282Google Scholar
  33. 33.
    Haynes CL, McFarland AD, Zhao L, Van Duyne RP, Schatz GC, Gunnarsson L, Prikulis J, Kasemo B, Kall M (2003) J Phys Chem B 107:7337–7342Google Scholar
  34. 34.
    Billot L, Lamy de la Chapelle M, Grimault AS, Vial A, Barchiesi D, Bijeon JL, Adam PM, Royer P (2006) Chem Phys Lett 422:303–307Google Scholar
  35. 35.
    De Jesus MA, Giesfeldt KS, Oran JM, Abu-Hatab NA, Lavrik NV, Stepaniak MJ (2005) Appl Spectrosc 59:1501–1508Google Scholar
  36. 36.
    Isola NR, Stokes DL, Vo-Dinh T (1998) Anal Chem 70:1352–1356Google Scholar
  37. 37.
    Vo-Dinh T, Houck K, Stokes DL (1994) Anal Chem 66:3379–3383Google Scholar
  38. 38.
    Wabuyele MB, Vo-Dinh T (2005) Anal Chem 77:7810–7815Google Scholar
  39. 39.
    Cao YC, Jin R, Mirkin CA (2002) Science 297:1536–1540Google Scholar
  40. 40.
    Jin RC, Cao YC, Thaxton CS, Mirkin CA (2006) Small 2:375–380Google Scholar
  41. 41.
    Cao YC, Jin R, Nam JM, Thaxton CS, Mirkin CA (2003) J Am Chem Soc 125:14676–14677Google Scholar
  42. 42.
    Green M, Liu FM, Cohen L, Kollensperger P, Cass T (2006) Faraday Discuss 132:269–280Google Scholar
  43. 43.
    Docherty FT, Monaghan PB, Keir R, Graham D, Smith WE, Cooper JM (2004) Chem Commun118–119Google Scholar
  44. 44.
    Graham D, Brown R, Smith WE (2001) Chem Commun 1002–1003Google Scholar
  45. 45.
    Graham D, Mallinder BJ, Smith WE (2000) Angew Chem Int Ed 39:1061–1064Google Scholar
  46. 46.
    Faulds K, Smith WE, Graham D (2004) Anal Chem 76:412–417Google Scholar
  47. 47.
    Munro CH, Smith WE, White PC (1995) Analyst 120:993–1003Google Scholar
  48. 48.
    Graham D, Faulds K, Smith WE (2006) Chem Commun 4363–4371Google Scholar
  49. 49.
    Sarkar J, Chowdhury J, Pal P, Talapatra GB (2006) Vib Spectrosc 41:90–96Google Scholar
  50. 50.
    Carron K, Mullen K, Lanouette M, Angersbach H (1991) Appl Spectrosc 45:420–423Google Scholar
  51. 51.
    Mullen KI, Wang D, Crane LG, Carron KT (1992) Anal Chem 64:930–936Google Scholar
  52. 52.
    Uphaus RA, Cotton TM, Moebius D (1985) Thin Solid Films 132:173–184Google Scholar
  53. 53.
    Dick LA, Haes AJ, Van Duyne RP (2000) J Phys Chem B 104:11752–11762Google Scholar
  54. 54.
    Lecomte S, Wackerbarth H, Soulimane T, Buse G, Hildebrandt P (1998) J Am Chem Soc 120:7381–7382Google Scholar
  55. 55.
    Farrens DL, Holt RE, Rospendowski BN, Song PS, Cotton TM (1989) J Am Chem Soc 111:9162–9169Google Scholar
  56. 56.
    Broderick JB, Natan MJ, O’Halloran TV, Van Duyne RP (1993) Biochemistry 32:13771–13776Google Scholar
  57. 57.
    Jancura D, Sanchez-Cortes S, Kocisova E, Tinti A, Miskovsky P, Bertoluzza A (1995) Biospectroscopy 1:265–273Google Scholar
  58. 58.
    Sanchez-Cortes S, Miskovsky P, Jancura D, Bertoluzza A (1996) J Phys Chem 100:1938–1944Google Scholar
  59. 59.
    Gouveia VJP, Gutz IG, Rubim JC (1994) J Electroanal Chem 371:37–42Google Scholar
  60. 60.
    Ni F, Thomas L, Cotton TM (1989) Anal Chem 61:888–894Google Scholar
  61. 61.
    Somsen GW, Coulter SK, Gooijer C, Velthorst NH, Brinkman UAT (1997) Anal Chim Acta 349:189–197Google Scholar
  62. 62.
    Aroca R, Clavijo RE, Jennings CA, Kovacs GJ, Duff JM, Loutfy RO (1989) Spectrochim Acta A Mol Biomol Spectrosc 45A:957–962Google Scholar
  63. 63.
    Hidalgo M, Montes R, Laserna JJ, Ruperez A (1996) Anal Chim Acta 318:229–237Google Scholar
  64. 64.
    Gaudry E, Aubard J, Amouri H, Levi G, Cordier C (2006) Biopolymers 82:399–404Google Scholar
  65. 65.
    Nie S, Emory SR (1997) Science 275:1102–1106Google Scholar
  66. 66.
    Michaels AM, Nirmal M, Brus LE (1999) J Am Chem Soc 121:9932–9939Google Scholar
  67. 67.
    Jiang J, Bosnick K, Maillard M, Brus L (2003) J Phys Chem B 107:9964–9972Google Scholar
  68. 68.
    Vosgroene T, Meixner AJ (2005) ChemPhysChem 6:154–163Google Scholar
  69. 69.
    Xu H, Bjerneld EJ, Kall M, Borjesson L (1999) Phys Rev Lett 83:4357–4360Google Scholar
  70. 70.
    Bjerneld EJ, Foeldes-Papp Z, Kaell M, Rigler R (2002) J Phys Chem B 106:1213–1218Google Scholar
  71. 71.
    Constantino CJ, Lemma T, Antunes PA, Aroca R (2001) Anal Chem 73:3674–3678Google Scholar
  72. 72.
    Goulet PJG, Pieczonka NPW, Aroca RF (2005) J Raman Spectrosc 36:574–580Google Scholar
  73. 73.
    Kneipp K, Kneipp H, Deinum G, Itzkan I, Dasari RR, Feld MS (1998) Appl Spectrosc 52:175–178Google Scholar
  74. 74.
    Kneipp K, Kneipp H, Kartha VB, Manoharan R, Deinum G, Itzkan I, Dasari RR, Feld MS (1998) Phys Rev E 57:R6281–R6284Google Scholar
  75. 75.
    Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Chem Phys 247:155–162Google Scholar
  76. 76.
    Ren B, Lin X-F, Yang Z-L, Liu G-K, Aroca RF, Mao B-W, Tian Z-Q (2003) J Am Chem Soc 125:9598–9599Google Scholar
  77. 77.
    Wang P, Wu G (2004) Chem Phys Lett 385:96–100Google Scholar
  78. 78.
    Wen R, Fang Y (2005) J Electroanal Chem 576:237–242Google Scholar
  79. 79.
    Lin X-F, Ren B, Yang Z-L, Liu G-K, Tian Z-Q (2005) J Raman Spectrosc 36:606–612Google Scholar
  80. 80.
    Dörfer T, Schmitt M, Popp J (2007) J Raman Spectrosc 38:1379–1382Google Scholar
  81. 81.
    Petry R, Schmitt M, Popp J (2003) ChemPhysChem 4:14–30Google Scholar
  82. 82.
    Schmitt M, Popp J (2006) J Raman Spectrosc 37:20–28Google Scholar
  83. 83.
    Cinta-Pinzaru S, Peica N, Kustner B, Schlucker S, Schmitt M, Frosch T, Faber JH, Bringmann G, Popp J (2006) J Raman Spectrosc 37:326–334Google Scholar
  84. 84.
    Peica N, Pavel I, Pinzaru SC, Rastogi VK, Kiefer W (2005) J Raman Spectrosc 36:657–666Google Scholar
  85. 85.
    Faulds K, Littleford RE, Graham D, Dent G, Smith WE (2004) Anal Chem 76:592–598Google Scholar
  86. 86.
    Schneider S, Grau H, Halbig P, Nickel U (1993) Analyst 118:689–694Google Scholar
  87. 87.
    Ayora Canada MJ, Ruiz Medina A, Frank J, Lendl B (2002) Analyst 127:1365–1369Google Scholar
  88. 88.
    Keir R, Igata E, Arundell M, Smith WE, Graham D, McHugh C, Cooper JM (2002) Anal Chem 74:1503–1508Google Scholar
  89. 89.
    Lee D, Lee S, Seong GH, Choo J, Lee EK, Gweon D-G, Lee S (2006) Appl Spectrosc 60:373–377Google Scholar
  90. 90.
    Jung J, Choo J, Kim DJ, Lee S (2006) Bull Korean Chem Soc 27:277–280CrossRefGoogle Scholar
  91. 91.
    Yea K-h, Lee S, Kyong JB, Choo J, Lee EK, Joo S-W, Lee S (2005) Analyst 130:1009 1011Google Scholar
  92. 92.
    McLaughlin C, MacMillan D, McCardle C, Smith WE (2002) Anal Chem 74:3160–3167Google Scholar
  93. 93.
    Strehle KR, Cialla D, Rösch P, Henkel T, Köhler M, Popp J (2007) Anal Chem 79:1542–1547Google Scholar
  94. 94.
    Bell SEJ, Mackle JN, Sirimuthu NMS (2005) Analyst 130:545–549Google Scholar
  95. 95.
    Stosch R, Henrion A, Schiel D, Guettler B (2005) Anal Chem 77:7386–7392Google Scholar
  96. 96.
    Zhang D, Xie Y, Deb SK, Davison VJ, Ben-Amotz D (2005) Anal Chem 77:3563–3569Google Scholar
  97. 97.
    Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP (2001) J Am Chem Soc 123:1471–1482Google Scholar
  98. 98.
    Yonzon CR, Lyandres O, Shah NC, Dieringer JA, Van Duyne RD (2006) Top Appl Phys 103:367–379CrossRefGoogle Scholar
  99. 99.
    Yonzon CR, Haynes CL, Zhang X, Walsh JT Jr, Van Duyne RP (2004) Anal Chem 76:78–85Google Scholar
  100. 100.
    Efrima S, Bronk BV (1998) J Phys Chem B 102:5947–5950Google Scholar
  101. 101.
    Jarvis RM, Brooker A, Goodacre R (2004) Anal Chem 76:5198–5202Google Scholar
  102. 102.
    Zeiri L, Bronk BV, Shabtai Y, Eichler J, Efrima S (2004) Appl Spectrosc 58:33–40Google Scholar
  103. 103.
    Zeiri L, Efrima S (2005) J Raman Spectrosc 36:667–675Google Scholar
  104. 104.
    Jarvis RM, Brooker A, Goodacre R (2006) Faraday Discuss 132:281–292Google Scholar
  105. 105.
    Laucks ML, Sengupta A, Junge K, Davis EJ, Swanson BD (2005) Appl Spectrosc 59:1222–1228Google Scholar
  106. 106.
    Sengupta A, Mujacic M, Davis EJ (2006) Anal Bioanal Chem 386:1379–1386Google Scholar
  107. 107.
    Leyton P, Lizama-Vergara PA, Campos-Vallette MM, Becker MI, Clavijo E, Cordova Reyes I, Vera M, Jerez CA (2005) J Chilean Chem Soc 50:725–730Google Scholar
  108. 108.
    Biju V, Pan D, Gorby YA, Fredrickson J, McLean J, Saffarini D, Lu HP (2007) Langmuir 23:1333–1338Google Scholar
  109. 109.
    Haynes CL, Yonzon CR, Zhang X, Van Duyne RP (2005) J Raman Spectrosc 36:471–484Google Scholar
  110. 110.
    Alexander TA, Pellegrino PM, Gillespie JB (2003) Appl Spectrosc 57:1340–1345Google Scholar
  111. 111.
    Premasiri WR, Moir DT, Klempner MS, Krieger N, Jones G II, Ziegler LD (2005) J Phys Chem B 109:312–320Google Scholar
  112. 112.
    Rösch P, Kiefer W, Popp J (2002) Biopolymers 67:358–361Google Scholar
  113. 113.
    Rösch P, Popp J, Kiefer W (1999) J Mol Struct 480–481:121–124Google Scholar
  114. 114.
    Dijkstra Reyer J, Scheenen Wim JJM, Dam N, Roubos Eric W, ter Meulen JJ (2007) J Neurosci Methods 159:43–50Google Scholar
  115. 115.
    Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K (2006) Nano Lett 6:2225–2231Google Scholar
  116. 116.
    Kneipp K, Haka AS, Kneipp H, Badizadegan K, Yoshizawa N, Boone C, Shafer-Peltier KE, Motz JT, Dasari RR, Feld MS (2002) Appl Spectrosc 56:150–154Google Scholar
  117. 117.
    Hu Q, Tay L-L, Noestheden M, Pezacki JP (2007) J Am Chem Soc 129:14–15Google Scholar
  118. 118.
    Eliasson C, Loren A, Engelbrektsson J, Josefson M, Abrahamsson J, Abrahamsson K (2005) Spectrochim Acta A Mol Biomol Spectrosc 61A:755–760Google Scholar
  119. 119.
    Nithipatikom K, McCoy MJ, Hawi SR, Nakamoto K, Adar F, Campbell WB (2003) Anal Biochem 322:198–207Google Scholar
  120. 120.
    Schlücker S, Küstner B, Punge A, Bonfig R, Marx A, Ströbel P (2006) J Raman Spectrosc 37:719–721Google Scholar
  121. 121.
    Kim J-H, Kim J-S, Choi H, Lee S-M, Jun B-H, Yu K-N, Kuk E, Kim Y-K, Jeong DH, Cho M-H, Lee Y-S (2006) Anal Chem 78:6967–6973Google Scholar
  122. 122.
    Lee S, Kim S, Choo J, Shin SY, Lee YH, Choi HY, Ha S, Kang K, Oh CH (2007) Anal Chem 79:916–922CrossRefGoogle Scholar
  123. 123.
    Geßner R, Rösch P, Kiefer W, Popp J (2002) Biopolymers 61:327–330Google Scholar
  124. 124.
    Geßner R, Winter C, Rösch P, Schmitt M, Petry R, Kiefer W, Lankers M, Popp J (2004) ChemPhysChem 5:1159–1170Google Scholar
  125. 125.
    Yano T-a, Verma P, Kawata S, Inouye Y (2006) Appl Phys Lett 88:093125/093121–093125/093123Google Scholar
  126. 126.
    Anderson N, Anger P, Hartschuh A, Novotny L (2006) Nano Lett 6:744–749Google Scholar
  127. 127.
    Hayazawa N, Yano T, Watanabe H, Inouye Y, Kawata S (2003) Chem Phys Lett 376:174–180Google Scholar
  128. 128.
    Roy D, Wang J, Welland ME (2006) Faraday Discuss 132:215–225Google Scholar
  129. 129.
    Verma P, Yamada K, Watanabe H, Inouye Y, Kawata S (2006) Phys Rev B 73:045416/045411–045416/045416Google Scholar
  130. 130.
    Wang JJ, Smith DA, Batchelder DN, Saito Y, Kirkham J, Robinson C, Baldwin K, Li G, Bennett B (2003) J Microsc 210:330–333Google Scholar
  131. 131.
    Kodama T, Ohtani H (2006) Appl Phys Lett 89:223107/223101–223107/223103Google Scholar
  132. 132.
    Yano T-A, Inouye Y, Kawata S (2006) Nano Lett 6:1269–1273Google Scholar
  133. 133.
    Saito Y, Yanagi K, Hayazawa N, Ishitobi H, Ono A, Kataura H, Kawata S (2006) Jpn J Appl Phys Part 1 45:9286–9289Google Scholar
  134. 134.
    Yeo B-S, Schmid T, Zhang W, Zenobi R (2007) Anal Bioanal Chem 387:2655–2662Google Scholar
  135. 135.
    Pan D, Klymyshyn N, Hu D, Lu HP (2006) Appl Phys Lett 88:093121/093121–093121/093123Google Scholar
  136. 136.
    Hayazawa N, Tarun A, Inouye Y, Kawata S (2002) J Appl Phys 92:6983–6986Google Scholar
  137. 137.
    Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2005) J Raman Spectrosc 36:541–550Google Scholar
  138. 138.
    Hayazawa N, Watanabe H, Saito Y, Kawata S (2006) J Chem Phys 125:244706/244701–244706/244707Google Scholar
  139. 139.
    Rasmussen A, Deckert V (2006) J Raman Spectrosc 37:311–317Google Scholar
  140. 140.
    Watanabe H, Ishida Y, Hayazawa N, Inouye Y, Kawata S (2004) Phys Rev B 69:155418/155411–155418/155411Google Scholar
  141. 141.
    Neugebauer U, Rösch P, Schmitt M, Popp J, Julien C, Rasmussen A, Budich C, Deckert V (2006) ChemPhysChem 7:1428–1430Google Scholar
  142. 142.
    Neugebauer U, Schmid U, Baumann K, Ziebuhr W, Kozitskaya S, Deckert V, Schmitt M, Popp J (2007) ChemPhysChem 8:124–137Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Katharina Hering
    • 1
  • Dana Cialla
    • 1
  • Katrin Ackermann
    • 1
  • Thomas Dörfer
    • 1
  • Robert Möller
    • 1
  • Henrik Schneidewind
    • 2
  • Roland Mattheis
    • 2
  • Wolfgang Fritzsche
    • 2
  • Petra Rösch
    • 1
  • Jürgen Popp
    • 1
    • 2
  1. 1.Institut für Physikalische ChemieFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Institut für Photonische TechnologienJenaGermany

Personalised recommendations