Analytical and Bioanalytical Chemistry

, Volume 390, Issue 2, pp 629–642 | Cite as

Total selenium and selenomethionine in pharmaceutical yeast tablets: assessment of the state of the art of measurement capabilities through international intercomparison CCQM-P86

  • H. Goenaga-Infante
  • R. Sturgeon
  • J. Turner
  • R. Hearn
  • M. Sargent
  • P. Maxwell
  • L. Yang
  • A. Barzev
  • Z. Pedrero
  • C. Cámara
  • V. Díaz Huerta
  • M. L. Fernández Sánchez
  • A. Sanz-Medel
  • K. Emese
  • P. Fodor
  • W. Wolf
  • R. Goldschmidt
  • V. Vacchina
  • J. Szpunar
  • L. Valiente
  • R. Huertas
  • G. Labarraque
  • C. Davis
  • R. Zeisler
  • G. Turk
  • E. Rizzio
  • L. G. Mackay
  • R. B. Myors
  • D. L. Saxby
  • S. Askew
  • W. Chao
  • W. Jun
Original Paper

Abstract

Results of an international intercomparison study (CCQM-P86) to assess the analytical capabilities of national metrology institutes (NMIs) and selected expert laboratories worldwide to accurately quantitate the mass fraction of selenomethionine (SeMet) and total Se in pharmaceutical tablets of selenised-yeast supplements (produced by Pharma Nord, Denmark) are presented. The study, jointly coordinated by LGC Ltd., UK, and the Institute for National Measurement Standards, National Research Council of Canada (NRCC), was conducted under the auspices of the Comité Consultatif pour la Quantité de Matière (CCQM) Inorganic Analysis Working Group and involved 15 laboratories (from 12 countries), of which ten were NMIs. Apart from a protocol for determination of moisture content and the provision of the certified reference material (CRM) SELM-1 to be used as the quality control sample, no sample preparation/extraction method was prescribed. A variety of approaches was thus used, including single-step and multiple-step enzymatic hydrolysis, enzymatic probe sonication and hydrolysis with methanesulfonic acid for SeMet, as well as microwave-assisted acid digestion and enzymatic probe sonication for total Se. For total Se, detection techniques included inductively coupled plasma (ICP) mass spectrometry (MS) with external calibration, standard additions or isotope dilution MS (IDMS), inductively coupled plasma optical emission spectrometry , flame atomic absorption spectrometry and instrumental neutron activation analysis. For determination of SeMet in the tablets, five NMIs and three academic/institute laboratories (of a total of five) relied upon measurements using IDMS. For species-specific IDMS measurements, an isotopically enriched standard of SeMet (76Se-enriched SeMet) was made available. A novel aspect of this study relies on the approach used to distinguish any errors which arise during analysis of a SeMet calibration solution from those which occur during analysis of the matrix. To help those participants undertaking SeMet analysis to do this, a blind sample in the form of a standard solution of natural abundance SeMet in 0.1 M HCl (with an expected value of 956 mg kg−1 SeMet) was provided. Both high-performance liquid chromatography (HPLC)–ICP-MS or gas chromatography (GC)–ICP-MS and GC-MS techniques were used for quantitation of SeMet. Several advances in analytical methods for determination of SeMet were identified, including the combined use of double IDMS with HPLC-ICP-MS following extraction with methanesulfonic acid and simplified two-step enzymatic hydrolysis with protease/lipase/driselase followed by HPLC-ICP-IDMS, both using a species-specific IDMS approach. Overall, satisfactory agreement amongst participants was achieved; results averaged 337.6 mg kg−1 (n = 13, with a standard deviation of 9.7 mg kg−1) and 561.5 mg kg−1(n = 11, with a standard deviation of 44.3 mg kg−1) with median values of 337.6 and 575.0 mg kg−1 for total Se and SeMet, respectively. Recovery of SeMet from SELM-1 averaged 95.0% (n = 9). The ability of NMIs and expert laboratories worldwide to deliver accurate results for total Se and SeMet in such materials (selensied-yeast tablets containing approximately 300 mg kg−1 Se) with 10% expanded uncertainty was demonstrated. The problems addressed in achieving accurate quantitation of SeMet in this product are representative of those encountered with a wide range of organometallic species in a number of common matrices.

Figure

Looking into the quantitative speciation of selenium in pharmaceutical supplements Photo courtesy of LGC.

Keywords

Pilot study CCQM-P86 Pharmaceutical tablets Selenised-yeast supplements Selenomethionine Total selenium Isotope dilution mass spectrometry 

Notes

Acknowledgements

LGC particularly acknowledges the efforts of E. Warburton and the Reference Materials Team, especially D. Curtis for help with sending the samples and standards to the participants. Special thanks go to S. Moesgaard from Pharma Nord, Vejle, Denmark, for providing the CCQM-P86 tablets. The pilot laboratories acknowledge, in particular, the efforts of R. Harte for sending the relevant documents to the participants and for collecting the data. The work described in this paper was supported by the UK Department for Innovation, Universities & Skills as part of the National Measurement System Chemical & Biological Metrology Knowledge Base Programme.

References

  1. 1.
    Rayman MP (2004) Br J Nutr 92:557–573CrossRefGoogle Scholar
  2. 2.
    Goenaga Infante H, Hearn R, Catterick T (2005) Anal Bioanal Chem 382:957–967CrossRefGoogle Scholar
  3. 3.
    Clark LC, Combs GF, Turnbull BW, Slate EH, Chalker DK, Chow J, Davis LS, Glover RA, Graham GF, Gross EG, Krongrad A, Lesher JL, Parl K, Sanders BB, Smith CL, Taylor R (1996) J Am Med Assoc 276:1957–1963CrossRefGoogle Scholar
  4. 4.
    Lobinski R, Edmonds JS, Suzuki KT, Uden PC (2000) Pure Appl Chem 72:447–461CrossRefGoogle Scholar
  5. 5.
    Uden PC (2002) Anal Bioanal Chem 373:422–431CrossRefGoogle Scholar
  6. 6.
    Yang L, Mester Z, Sturgeon R (2004) Anal Chem 76:5149–5156CrossRefGoogle Scholar
  7. 7.
    Yang L, Sturgeon RE, McSheehy S, Mester Z (2004) J Chromatogr A 1055:177–184CrossRefGoogle Scholar
  8. 8.
    Wolf WR, Zainal H, Yager B (2001) Fresenius J Anal Chem 370:286–290CrossRefGoogle Scholar
  9. 9.
    Yang L, Sturgeon RE, Wolf WR, Goldschmidt RJ, Mester Z (2004) J Anal At Spectrom 19:1448–1453CrossRefGoogle Scholar
  10. 10.
    Mester Z, Willie S, Yang L, Sturgeon R, Caruso JA, Fernández ML, Fodor P, Goldschmidt RJ, Goenaga-Infante H, Lobinski R, Maxwell P, McSheehy S, Polatajko A, Sadi BB, Sanz-Medel A, Scriver C, Szpunar J, Wahlen R, Wolf W (2006) Anal Bioanal Chem 385:168–180CrossRefGoogle Scholar
  11. 11.
    Goenaga Infante H, O’Connor G, Rayman M, Spallholz JE, Wahlen R, Hearn R, Catterick T (2005) J Anal At Spectrom 20:864–870CrossRefGoogle Scholar
  12. 12.
    Díaz Huerta V, Hinojosa Reyes L, Marchante-Gayón JM, Fernández Sánchez ML, Sanz-Medel A (2003) J Anal At Spectrom 18:1243–1247CrossRefGoogle Scholar
  13. 13.
    Potalajko A, Sliwka-Kaszynska M, Dernovics M, Ruzik R, Encinar JR, Szpunar J (2004) J Anal At Spectrom 19:114–120CrossRefGoogle Scholar
  14. 14.
    Encinar JR, Ouerdane L, Buchmann W, Tortajada J, Lobinski R, Szpunar J (2003) Anal Chem 75:3765–3774CrossRefGoogle Scholar
  15. 15.
    Uden PC, Boakye HT, Kahakachchi C, Hafezi R, Nolibos P, Block E, Johnson S, Tyson JF (2004) J Anal At Spectrom 19:65–73CrossRefGoogle Scholar
  16. 16.
    Wrobel K, Wrobel K, Caruso JA (2002) J Anal At Spectrom 17:1048–1054CrossRefGoogle Scholar
  17. 17.
    McSheehy S, Kelly J, Tessier L, Mester Z (2005) Analyst 130:35–37CrossRefGoogle Scholar
  18. 18.
    Larsen EH, Hansen M, Paulin H, Moesgaard S, Reid M, Rayman M (2004) J AOAC Int 87:225–232Google Scholar
  19. 19.
    Szpunar J (2005) Analyst 4:442–465CrossRefGoogle Scholar
  20. 20.
    Dumont E, De Cremer K, Van Hulle M, Chéry CC, Vanhaecke F, Cornelis R (2004) J Anal At Spectrom 19:167–171CrossRefGoogle Scholar
  21. 21.
    Capelo JL, Ximénez-Embun P, Madrid-Albarrán Y, Cámara C (2004) Anal Chem 76:233–237CrossRefGoogle Scholar
  22. 22.
    Bodo ET, Stefanka Z, Ipolyi I, Soros C, Dernovics M, Fodor P (2003) Anal Bioanal Chem 377:32–38CrossRefGoogle Scholar
  23. 23.
    Polatajko A, Bana B, Encinar JR, Szpunar J (2005) Anal Bioanal Chem 381:844–849CrossRefGoogle Scholar
  24. 24.
    ISO (1993) Guide to the expression of uncertainty in measurement. ISO, GenevaGoogle Scholar
  25. 25.
    Heumann KG, Rottmann L, Vogl J (1994) J Anal At Spectrom 9:1351–1355CrossRefGoogle Scholar
  26. 26.
    McSheehy S, Pannier F, Szpunar J, Potin-Gautier M, Lobinski R (2002) Analyst 127:223–229CrossRefGoogle Scholar
  27. 27.
    Cox M (2000) In Ciarlini P, Forbes AB, Pavese F, Ritcher D (eds) Advanced mathematical and computational tools in metrology IV, World Scientific, Singapore, pp 45–65Google Scholar
  28. 28.
    Amoako PO, Kahakachchi CL, Dodova EN, Uden PC, Tyson JF (2007) J Anal At Spectrom 22:938–946CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • H. Goenaga-Infante
    • 1
  • R. Sturgeon
    • 2
  • J. Turner
    • 1
  • R. Hearn
    • 1
  • M. Sargent
    • 1
  • P. Maxwell
    • 2
  • L. Yang
    • 2
  • A. Barzev
    • 3
  • Z. Pedrero
    • 4
  • C. Cámara
    • 4
  • V. Díaz Huerta
    • 5
  • M. L. Fernández Sánchez
    • 5
  • A. Sanz-Medel
    • 5
  • K. Emese
    • 6
  • P. Fodor
    • 6
  • W. Wolf
    • 7
  • R. Goldschmidt
    • 7
  • V. Vacchina
    • 8
  • J. Szpunar
    • 8
  • L. Valiente
    • 9
  • R. Huertas
    • 10
  • G. Labarraque
    • 11
  • C. Davis
    • 12
  • R. Zeisler
    • 12
  • G. Turk
    • 12
  • E. Rizzio
    • 13
  • L. G. Mackay
    • 14
  • R. B. Myors
    • 14
  • D. L. Saxby
    • 14
  • S. Askew
    • 14
  • W. Chao
    • 15
  • W. Jun
    • 15
  1. 1.LGC Limited, Queens Road, Teddington, TW11 OLYMiddlesexUK
  2. 2.Institute for National Measurement Standards, National Research Council of CanadaOttawaCanada
  3. 3.CSIR-National Metrology LaboratoryPretoriaSouth Africa
  4. 4.Department of Analytical ChemistryFaculty of Chemistry, Complutense University of MadridMadridSpain
  5. 5.Department of Physical and Analytical ChemistryUniversity of OviedoOviedoSpain
  6. 6.Department of Applied ChemistryCorvinus University of BudapestBudapestHungary
  7. 7.Food Composition Laboratory, BHNRC, ARS, USDABeltsvilleUSA
  8. 8.Group of Bio-Inorganic Analytical Chemistry, CNRS UMR 5034PauFrance
  9. 9.Instituto Nacional de Tecnología IndustrialProvincia de Buenos AiresArgentina
  10. 10.Laboratorio Tecnológico del UruguayMontevideoUruguay
  11. 11.Laboratoire National d’Essais, 1, rue Gaston BoissierParis Cedex 15France
  12. 12.National Institute of Standards and TechnologyGaithersburgUSA
  13. 13.National Institute of Metrological Research, Unit of Radiochemistry and Spectroscopy, Department of General ChemistryUniversity of PaviaPaviaItaly
  14. 14.National Measurement Institute, AustraliaPymbleAustralia
  15. 15.National Institute of Metrology P. R. ChinaBeijingChina

Personalised recommendations